Get access

New Ultraviolet Photodetector Based on Individual Nb2O5 Nanobelts

Authors

  • Xiaosheng Fang,

    Corresponding author
    1. Department of Materials Science, Fudan University, Shanghai 200433, P. R. China
    • Department of Materials Science, Fudan University, Shanghai 200433, P. R. China
    Search for more papers by this author
  • Linfeng Hu,

    Corresponding author
    1. Department of Materials Science, Fudan University, Shanghai 200433, P. R. China
    • Department of Materials Science, Fudan University, Shanghai 200433, P. R. China
    Search for more papers by this author
  • Kaifu Huo,

    Corresponding author
    1. The Key State Laboratory Breeding Base of Refractories and Ceramics, School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
    • The Key State Laboratory Breeding Base of Refractories and Ceramics, School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
    Search for more papers by this author
  • Biao Gao,

    1. The Key State Laboratory Breeding Base of Refractories and Ceramics, School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
    Search for more papers by this author
  • Lijuan Zhao,

    1. Department of Materials Science, Fudan University, Shanghai 200433, P. R. China
    Search for more papers by this author
  • Meiyong Liao,

    1. Sensor Materials Center, National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
    Search for more papers by this author
  • Paul K. Chu,

    1. Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
    Search for more papers by this author
  • Yoshio Bando,

    1. International Center for Materials Nanoarchitectonics (MANA), NIMS, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
    Search for more papers by this author
  • Dmitri Golberg

    1. International Center for Materials Nanoarchitectonics (MANA), NIMS, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
    Search for more papers by this author

Abstract

Although human eyes are quite insensitive to ultraviolet (UV) light, most of the longer wavelength UV light (the UV-A band between 320 and 400 nm) does reach the earth surface and after prolonged exposure, the radiation can cause health concerns especially skin cancer. Therefore, it is extremely important to explore ways to effectively monitor the radiation. Herein we report for the first time a new high-performance UV photodetector made of an individual Nb2O5 nanobelt. Quasi-aligned Nb2O5 nanobelts 100–500 nm wide and 2–10 μm long were synthesized using a hydrothermal treatment of a niobium foil in a KOH solution followed by proton exchange and calcination treatment. A nanostructured photodetector was constructed from an individual Nb2O5 nanobelt and its optoelectronic properties were evaluated. The detector exhibited linear photocurrent characteristics, excellent light selectivity, and high external quantum-efficiency (EQE) of 6070%. Long-term stability of the photocurrent over a period of 2500 s at an applied voltage of 1.0 V was achieved. The photodetector performance was further enhanced by improving the crystallinity and eliminating the defects in the Nb2O5 nanobelt crystals. These excellent optoelectronic properties demonstrate that Nb2O5 nanobelts are suitable for visible-blind UV-light sensors and optoelectronic circuits, especially those operating in the UV-A range.

Ancillary