• graphene composite;
  • Conductive-AFM;
  • Electrostatic Force Microscopy;
  • 3D reconstruction


The local electrical properties of a conductive graphene/polystyrene (PS) composite sample are studied by scanning probe microscopy (SPM) applying various methods for electrical properties investigation. We show that the conductive graphene network can be separated from electrically isolated graphene sheets (GS) by analyzing the same area with electrostatic force microscopy (EFM) and conductive atomic force microscopy (C-AFM). EFM is able to detect the graphene sheets below the sample surface with the maximal depth of graphene detection up to ≈100 nm for a tip-sample potential difference of 3 V. To evaluate depth sensing capability of EFM, the novel technique based on a combination of SPM and microtomy is utilized. Such a technique provides 3D data of the GS distribution in the polymer matrix with z-resolution on the order of ≈10 nm. Finally, we introduce a new method for data correction for more precise 3D reconstruction, which takes into account the height variations.