Get access

Efficient Transparent Thin Dye Solar Cells Based on Highly Porous 1D Photonic Crystals

Authors

  • Silvia Colodrero,

    1. Instituto de Ciencia de Materiales de Sevilla (CSIC-US), Centro de Investigaciones Científicas Isla de la Cartuja, C/Américo Vespucio 49, 41092 Sevilla, Spain
    Search for more papers by this author
  • Amparo Forneli,

    1. Institute of Chemical Research of Catalonia (ICIQ) Avda., Països Catalans 16, 43007 Tarragona, Spain
    Search for more papers by this author
  • Carmen López-López,

    1. Instituto de Ciencia de Materiales de Sevilla (CSIC-US), Centro de Investigaciones Científicas Isla de la Cartuja, C/Américo Vespucio 49, 41092 Sevilla, Spain
    Search for more papers by this author
  • Laia Pellejà,

    1. Institute of Chemical Research of Catalonia (ICIQ) Avda., Països Catalans 16, 43007 Tarragona, Spain
    Search for more papers by this author
  • Hernán Míguez,

    Corresponding author
    1. Instituto de Ciencia de Materiales de Sevilla (CSIC-US), Centro de Investigaciones Científicas Isla de la Cartuja, C/Américo Vespucio 49, 41092 Sevilla, Spain
    • Instituto de Ciencia de Materiales de Sevilla (CSIC-US), Centro de Investigaciones Científicas Isla de la Cartuja, C/Américo Vespucio 49, 41092 Sevilla, Spain
    Search for more papers by this author
  • Emilio Palomares

    Corresponding author
    1. Institute of Chemical Research of Catalonia (ICIQ) Avda., Països Catalans 16, 43007 Tarragona, Spain
    2. Institució Catalana de Recerca i Estudis Avançats (ICREA), Avda. Lluís Companys 23, 08010 Barcelona, Spain
    • Institute of Chemical Research of Catalonia (ICIQ) Avda., Països Catalans 16, 43007 Tarragona, Spain.
    Search for more papers by this author

Abstract

A working electrode design based on a highly porous 1D photonic crystal structure that opens the path towards high photocurrents in thin, transparent, dye-sensitized solar cells is presented. By enlarging the average pore size with respect to previous photonic crystal designs, the new working electrode not only increases the device photocurrent, as predicted by theoretical models, but also allows the observation of an unprecedented boost of the cell photovoltage, which can be attributed to structural modifications caused during the integration of the photonic crystal. These synergic effects yield conversion efficiencies of around 3.5% by using just 2 μm thick electrodes, with enhancements between 100% and 150% with respect to reference cells of the same thickness.

Ancillary