Get access

Nanoscale Ferroelectricity in Crystalline γ-Glycine

Authors


Abstract

Ferroelectrics are multifunctional materials that reversibly change their polarization under an electric field. Recently, the search for new ferroelectrics has focused on organic and bio-organic materials, where polarization switching is used to record/retrieve information in the form of ferroelectric domains. This progress has opened a new avenue for data storage, molecular recognition, and new self-assembly routes. Crystalline glycine is the simplest amino acid and is widely used by living organisms to build proteins. Here, it is reported for the first time that γ-glycine, which has been known to be piezoelectric since 1954, is also a ferroelectric, as evidenced by local electromechanical measurements and by the existence of as-grown and switchable ferroelectric domains in microcrystals grown from the solution. The experimental results are rationalized by molecular simulations that establish that the polarization vector in γ-glycine can be switched on the nanoscale level, opening a pathway to novel classes of bioelectronic logic and memory devices.

Get access to the full text of this article

Ancillary