Efficient Synthesis of Heteroatom (N or S)-Doped Graphene Based on Ultrathin Graphene Oxide-Porous Silica Sheets for Oxygen Reduction Reactions



Heteroatom (N or S)-doped graphene with high surface area is successfully synthesized via thermal reaction between graphene oxide and guest gases (NH3 or H2S) on the basis of ultrathin graphene oxide-porous silica sheets at high temperatures. It is found that both N and S-doping can occur at annealing temperatures from 500 to 1000 °C to form the different binding configurations at the edges or on the planes of the graphene, such as pyridinic-N, pyrrolic-N, and graphitic-N for N-doped graphene, thiophene-like S, and oxidized S for S-doped graphene. Moreover, the resulting N and S-doped graphene sheets exhibit good electrocatalytic activity, long durability, and high selectivity when they are employed as metal-free catalysts for oxygen reduction reactions. This approach may provide an efficient platform for the synthesis of a series of heteroatom-doped graphenes for different applications.