• electrospun polymer nanofibers;
  • ethanol dispersion;
  • CD4+ T lymphocyte;
  • cell separation;
  • cell transplantation


A novel cell isolation and release platform using electrospun polystyrene-poly(styrene-co-maleic anhydride) (PS-PSMA) nanofibers is presented. Ethanol treatment of PS-PSMA nanofibers, employed for the purpose of sterilization, significantly increases their inter-fiber space for both antibody conjugation and subsequent cell separation. For the selective isolation of CD4+ T cells from heterogeneous mixtures of mouse lymph nodes, capture efficiencies of up to 100% are achieved while maintaining cellular integrity and viability. Once captured, CD4+ T lymphocytes can also be released from the NF scaffolds, further demonstrating its potential functionality as an immune cell-supporting and releasing matrix. This is the first demonstration of lymphocyte-culture scaffolds enabling selective isolation, accommodation, and sustained release of CD4+ T cells for the purpose of cell therapies.