Get access

Compact Saloplastic Poly(Acrylic Acid)/Poly(Allylamine) Complexes: Kinetic Control Over Composition, Microstructure, and Mechanical Properties

Authors

  • Andreas Reisch,

    1. Laboratoire de Conception et Application, de Molécules Bioactives, UMR 7199, CNRS/Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch Cedex, France, and International Center for Frontier, Research in Chemistry, 8 allée Gaspard Monge, 67083 Strasbourg, France
    Search for more papers by this author
  • Patricia Tirado,

    1. Laboratoire de Conception et Application, de Molécules Bioactives, UMR 7199, CNRS/Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch Cedex, France, and International Center for Frontier, Research in Chemistry, 8 allée Gaspard Monge, 67083 Strasbourg, France
    Search for more papers by this author
  • Emilie Roger,

    1. Laboratoire de Conception et Application, de Molécules Bioactives, UMR 7199, CNRS/Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch Cedex, France, and International Center for Frontier, Research in Chemistry, 8 allée Gaspard Monge, 67083 Strasbourg, France
    Search for more papers by this author
  • Fouzia Boulmedais,

    1. Centre National de la Recherche Scientifique, Institut Charles Sadron, UPR 22, 23 rue du Loess, 67034 Strasbourg Cedex, France, and International Center for Frontier Research in Chemistry, 8 allée Gaspard Monge, 67083 Strasbourg, France.
    Search for more papers by this author
  • Dominique Collin,

    1. Centre National de la Recherche Scientifique, Institut Charles Sadron, UPR 22, 23 rue du Loess, 67034 Strasbourg Cedex, France, and International Center for Frontier Research in Chemistry, 8 allée Gaspard Monge, 67083 Strasbourg, France.
    Search for more papers by this author
  • Jean-Claude Voegel,

    1. Institut National de la Santé et de la Recherche Médicale, INSERM Unité 977, 11 rue Humann, 67085 Strasbourg Cedex, France.
    Search for more papers by this author
  • Benoît Frisch,

    Corresponding author
    1. Laboratoire de Conception et Application, de Molécules Bioactives, UMR 7199, CNRS/Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch Cedex, France, and International Center for Frontier, Research in Chemistry, 8 allée Gaspard Monge, 67083 Strasbourg, France
    • Laboratoire de Conception et Application, de Molécules Bioactives, UMR 7199, CNRS/Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch Cedex, France, and International Center for Frontier, Research in Chemistry, 8 allée Gaspard Monge, 67083 Strasbourg, France.
    Search for more papers by this author
  • Pierre Schaaf,

    1. Centre National de la Recherche Scientifique, Institut Charles Sadron, UPR 22, 23 rue du Loess, 67034 Strasbourg Cedex, France, and International Center for Frontier Research in Chemistry, 8 allée Gaspard Monge, 67083 Strasbourg, France.
    Search for more papers by this author
  • Joseph B. Schlenoff

    1. Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, FL 32306, USA
    Search for more papers by this author

Abstract

Durable compact polyelectrolyte complexes (CoPECs) with controlled porosity and mechanical properties are prepared by ultracentrifugation. Because the starting materials, poly(allylamine hydrochloride) (PAH) and poly(acrylic acid sodium salt) (PAA), are weak acids/bases, both composition and morphology are controlled by solution pH. In addition, the nonequilibrium nature of polyelectrolyte complexation can be exploited to provide a range of compositions and porosities under the influence of polyelectrolyte addition order and speed, and concentration. Confocal microscopy shows these “saloplastic” materials to be highly porous, where pore formation is attributed to a combination of deswelling of the polyelectrolyte matrix and expansion of small inhomogenities by osmotic pressure. The porosity (15–70%) and the pore size (<5 μm to >70 μm) of these materials can be tuned by adjusting the PAA to PAH ratio, the salt concentration, and the pH. The modulus of these CoPECs depends on the ratio of the two polyelectrolytes, with stoichiometric complexes being the stiffest due to optimized charge pairing, which correlates with maximized crosslinking density. Mechanical properties, pore sizes, and pore density of these materials make them well suited to three dimensional supports for tissue engineering applications.

Ancillary