Get access
Advertisement

Highly Sensitive Chemical-Vapor Sensor Based on Thin-Film Organic Field-Effect Transistors with Benzothiadiazole-Fused-Tetrathiafulvalene

Authors

  • Ge Yang,

    1. Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
    Search for more papers by this author
  • Chong-an Di,

    1. Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
    Search for more papers by this author
  • Guanxin Zhang,

    1. Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
    Search for more papers by this author
  • Jing Zhang,

    1. Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
    Search for more papers by this author
  • Junfeng Xiang,

    1. Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
    Search for more papers by this author
  • Deqing Zhang,

    Corresponding author
    1. Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
    • Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
    Search for more papers by this author
  • Daoben Zhu

    1. Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
    Search for more papers by this author

Abstract

The synthesis of a new tetrathiafulvalene derivative with an electron-withdrawing benzothiadiazole moiety and its use in thin-film organic field-effect transistors (OFETs) are reported. Compared to reported OFETs with other TTF derivatives, a high hole mobility up to 0.73 cm2 V−1 s−1, low off-current and high on/off ratio up to 105 are demonstrated. In addition, the developed OFETs show fast responsiveness toward chemical vapors of DECP (diethyl chlorophosphate) or POCl3 which are simulants of phosphate-based nerve agents. In contrast to previously reported OFET-based sensors, off-current is used as the output signal, which increases quickly upon exposure to either DECP or POCl3 vapors. High sensitivity is demonstrated toward DECP and POCl3 vapors, with concentrations as low as 10 ppb being detected. These OFETs are also responsive to TNT vapor. The sensing mechanisms for the new type of OFET are discussed.

Get access to the full text of this article

Ancillary