Advertisement

A Near-Infrared Light-Triggered Nanocarrier with Reversible DNA Valves for Intracellular Controlled Release

Authors

  • Na Li,

    1. College of Chemistry, Chemical Engineering and Materials Science, Engineering Research Center of Pesticide and Medicine Intermediate Clean Production, Ministry of Education, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
    Search for more papers by this author
  • Zhengze Yu,

    1. College of Chemistry, Chemical Engineering and Materials Science, Engineering Research Center of Pesticide and Medicine Intermediate Clean Production, Ministry of Education, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
    Search for more papers by this author
  • Wei Pan,

    1. College of Chemistry, Chemical Engineering and Materials Science, Engineering Research Center of Pesticide and Medicine Intermediate Clean Production, Ministry of Education, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
    Search for more papers by this author
  • Yaoyao Han,

    1. College of Chemistry, Chemical Engineering and Materials Science, Engineering Research Center of Pesticide and Medicine Intermediate Clean Production, Ministry of Education, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
    Search for more papers by this author
  • Tingting Zhang,

    1. College of Chemistry, Chemical Engineering and Materials Science, Engineering Research Center of Pesticide and Medicine Intermediate Clean Production, Ministry of Education, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
    Search for more papers by this author
  • Bo Tang

    Corresponding author
    1. College of Chemistry, Chemical Engineering and Materials Science, Engineering Research Center of Pesticide and Medicine Intermediate Clean Production, Ministry of Education, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
    • College of Chemistry, Chemical Engineering and Materials Science, Engineering Research Center of Pesticide and Medicine Intermediate Clean Production, Ministry of Education, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.

    Search for more papers by this author

Abstract

A near-infrared (NIR) light-triggered nanocarrier is developed for intracellular controlled release with good stability, high nuclease resistance, and good biocompatibility. The nanocarrier consists of a gold nanorod core and mesoporous silica shell, capped with reversible single-stranded DNA valves, which are manipulated by switching between the laser on/off states. Upon laser irradiation, the valves of the nanocarrier open and the cargo molecules can be released from the mesopores. When the NIR laser is turned off, the valves close and the nanocarrier stops releasing the cargo molecules. The release amount of the cargo molecules can be controlled precisely by adjusting the irradiation time and the laser on-off cycles. Confocal fluorescence imaging shows that the nanocarrier can be triggered by the laser irradiation and the controlled release can be accomplished in living cells. Moreover, the therapeutic effect toward cancer cells can also be regulated when the chemotherapeutic drug doxorubicin is loaded into the nanocarrier. This novel approach provides an ideal platform for drug delivery by a NIR light-activated mechanism with precise control of area, time, and especially dosage.

Ancillary