Get access
Advertisement

Dry-Type Artificial Muscles Based on Pendent Sulfonated Chitosan and Functionalized Graphene Oxide for Greatly Enhanced Ionic Interactions and Mechanical Stiffness

Authors

  • Jin-Han Jeon,

    1. School of Mechanical, Aerospace and Systems Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea
    Search for more papers by this author
  • Ravi Kumar Cheedarala,

    1. School of Mechanical, Aerospace and Systems Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea
    2. School of Mechanical Systems Engineering, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwang-Ju, 500-757, Republic of Korea
    Search for more papers by this author
  • Chang-Doo Kee,

    Corresponding author
    1. School of Mechanical Systems Engineering, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwang-Ju, 500-757, Republic of Korea
    • Chang-Doo Kee, School of Mechanical Systems Engineering, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwang-Ju, 500-757, Republic of Korea.

      Il-Kwon Oh, School of Mechanical, Aerospace and Systems Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea

    Search for more papers by this author
  • Il-Kwon Oh

    Corresponding author
    1. School of Mechanical, Aerospace and Systems Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea
    • Chang-Doo Kee, School of Mechanical Systems Engineering, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwang-Ju, 500-757, Republic of Korea.

      Il-Kwon Oh, School of Mechanical, Aerospace and Systems Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea

    Search for more papers by this author

Abstract

Biopolymer-based artificial muscles are promising candidates for biomedical applications and smart electronic textiles due to their multifaceted advantages like natural abundance, eco-friendliness, cost-effectiveness, easy chemical modification and high electical reactivity. However, the biopolymer-based actuators are showing relatively low actuation performance compared with synthetic electroactive polymers because of inadequate mechanical stiffness, low ionic conductivity and ionic exchange capacity (IEC), and poor durability over long-term activation. This paper reports a high-performance electro-active nano-biopolymer based on pendent sulfonated chitosan (PSC) and functionalized graphene oxide (GO), exhibiting strong electro-chemo-mechanical interations with ionic liquid (IL) in open air environment. The proposed GO-PSC-IL nano-biopolymer membrane shows an icnreased tensile strength and ionic exchange capacity of up to 44.8% and 83.1%, respectively, and increased ionic conductivity of over 18 times, resulting in two times larger bending actuation than the pure chitosan actuator under electrical input signals. Eventually, the GO-PSC-IL actuators could show robust and high-performance actuation even at the very low applied voltages that are required in realistic applications.

Get access to the full text of this article

Ancillary