Get access

Spatial Control of Condensation and Freezing on Superhydrophobic Surfaces with Hydrophilic Patches

Authors

  • Lidiya Mishchenko,

    1. Wyss Institute for Bio-inspired Engineering, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
    Search for more papers by this author
  • Mughees Khan,

    1. Wyss Institute for Bio-inspired Engineering, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
    Search for more papers by this author
  • Joanna Aizenberg,

    1. Wyss Institute for Bio-inspired Engineering, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
    Search for more papers by this author
  • Benjamin D. Hatton

    Corresponding author
    1. Wyss Institute for Bio-inspired Engineering, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
    2. Department of Materials Science and Engineering, University of Toronto, Toronto, ON, Canada
    • Wyss Institute for Bio-inspired Engineering, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
    Search for more papers by this author

Abstract

Certain natural organisms use micro-patterned surface chemistry, or ice-nucleating species, to control water condensation and ice nucleation for survival under extreme conditions. As an analogy to these biological approaches, it is shown that functionalized, hydrophilic polymers and particles deposited on the tips of superhydrophobic posts induce precise topographical control over water condensation and freezing at the micrometer scale. A bottom-up deposition process is used to take advantage of the limited contact area of a non-wetting aqueous solution on a superhydrophobic surface. Hydrophilic polymer deposition on the tips of these geometrical structures allows spatial control over the nucleation, growth, and coalescence of micrometer-scale water droplets. The hydrophilic tips nucleate water droplets with extremely uniform nucleation and growth rates, uniform sizes, an increased stability against coalescence, and asymmetric droplet morphologies. Control of freezing behavior is also demonstrated via deposition of ice-nucleating AgI nanoparticles on the tips of these structures. This combination of the hydrophilic polymer and AgI particles on the tips was used to achieve templating of ice nucleation at the micrometer scale. Preliminary results indicate that control over ice crystal size, spatial symmetry, and position might be possible with this method. This type of approach can serve as a platform for systematically analyzing micrometer-scale condensation and freezing phenomena, and as a model for natural systems.

Ancillary