SEARCH

SEARCH BY CITATION

Keywords:

  • stretchable electronics;
  • stretchable solar cells;
  • organic photovoltaics;
  • mechanical properties;
  • conjugated polymers;
  • polythiophene

Despite the importance of mechanical compliance in most applications of semiconducting polymers, the effects of structural parameters of these materials on their mechanical properties are typically not emphasized. This paper examines the effect of length of the pendant group on the tensile modulus and brittleness for a series of regioregular poly(3-alkylthiophenes) (P3ATs) and their blends with a soluble fullerene derivative, PCBM. The tensile modulus decreases with increasing length of the alkyl side-chain, from 1.87 GPa for butyl side chains to 0.16 GPa for dodecyl chains. The moduli of P3AT:PCBM blends films are greater than those of the pure polymers by factors of 2–4. A theoretical model produces a trend in the effect of alkyl side chain on tensile modulus that follows closely to the experimental measurements. Tensile modulus correlates with brittleness, as the strain at which cracks appear is 6% for P3BT and >60% for P3OT. Adhesion of the P3AT film to a polydimethylsiloxane (PDMS) substrate is believed to play a role in an apparent increase in brittleness from P3OT to P3DDT. The additive 1,8-Diiodooctane (DIO) reduces the modulus of P3HT:PCBM blend by a factor of 3. These results could enable mechanically robust, flexible, and stretchable electronics.