Arrayed rGOSH/PMASH Microcapsule Platform Integrating Surface Topography, Chemical Cues, and Electrical Stimulation for Three-Dimensional Neuron-Like Cell Growth and Neurite Sprouting

Authors


Abstract

The biocompatible thiol-functionalized rGOSH/PMASH microcapsules encapsulating nerve growth factor (NGF) are arrayed onto a transparent and conductive substrate, i.e., indium tin oxide (ITO), to integrate electrically stimulated cellular differentiation, electrically controlled NGF release, and topographically rough nano-surfaces into a 3-D platform for nerve regeneration. The rGOSH/PMASH microcapsules with microscale topography function not only as an adhesive coating to promote the adhesion of PC12 cells but also as electroactive NGF-releasing electrodes that stimulate NGF release and accelerate the differentiation of PC12 cells during electrical stimulation. Once electrical treatment is applied, NGF release and electrically enhanced cellular differentiation lead to an obvious increase both in the percentage of cells with neurites and in the neurite length. This length can reach nearly 90 μm within 2 days of cell culture. The average neurite length is significantly increased (four-fold) after culture on the rGOSH/PMASH microcapsule substrate for 2 days compared with culture on a substrate without an rGOSH/PMASH coating. These multifunctional rGOSH/PMASH microcapsules may be used as potential 3-D patterned substrates for neural regeneration and neural prosthetics in tissue engineering applications.

Ancillary