SEARCH

SEARCH BY CITATION

Keywords:

  • liquid crystal elastomers;
  • magnetic nanocomposites;
  • light stimuli;
  • magnetic actuator;
  • smart materials

Remotely controlled actuation with wireless sensorial feed-back is desirable for smart materials to obtain fully computer-controlled actuators. A light-controllable polymeric material is presented, in which exposure to light couples with a change in magnetic properties, allowing light signal conversion into non-volatile magnetic memory. The same material can serve, additionally, both as actuator and transducer, and allows the monitoring of its two-way elastic shape-changes by magnetic read-out. In order to tune the macroscopic magnetic properties of the material, both the reorientation of i) shape anisotropic ferrimagnetic nano-spindles and ii) a mechanically and magnetically coupled liquid-crystalline elastomer (LCE) matrix are controlled. These materials are envisioned to have great potential for the development of innovative functional objects, for example, computer-controlled smart clothing, sensors, signal encoding, micro-valves, and robotic devices.