• biofilm;
  • cell proliferation;
  • gene expression;
  • titanium alloy;
  • surface analysis


Titanium-based implants are widely used in modern clinical practice; however, complications associated with implants due to bacterial-induced infections arise frequently, caused mainly by staphylococci, streptococci, Pseudomonas spp. and coliform bacteria. Although increased hydrophilicity of the biomaterial surface is known to be beneficial in minimizing the biofilm, quantitative analyses between the actual implant parameters and bacterial development are scarce. Here, the results of in vitro studies of Staphylococcus aureus and Staphylococcus epidermidis proliferation on uncoated and coated titanium materials with different roughness, porosity, topology, and hydrophilicity are shown. The same materials have been tested in parallel with respect to human osteogenic and endothelial cell adhesion, proliferation, and differentiation. The experimental data processed by meta-analysis are indicating the possibility of decreasing the biofilm formation by 80–90% for flat substrates versus untreated plasma-sprayed porous titanium and by 65–95% for other porous titanium coatings. It is also shown that optimized surfaces would lead to 10–50% enhanced cell proliferation and differentiation versus reference porous titanium coatings. This presents an opportunity to manufacture implants with intrinsic reduced infection risk, yet without the additional use of antibacterial substances.