SEARCH

SEARCH BY CITATION

Cited in:

CrossRef

This article has been cited by:

  1. 1
    Wouter Habraken, Pamela Habibovic, Matthias Epple, Marc Bohner, Calcium phosphates in biomedical applications: materials for the future?, Materials Today, 2016, 19, 2, 69

    CrossRef

  2. 2
    Sarah Christoph, Julien Kwiatoszynski, Thibaud Coradin, Francisco M. Fernandes, Cellularized Cellular Solids via Freeze-Casting, Macromolecular Bioscience, 2016, 16, 2
  3. 3
    Y. Guyot, I. Papantoniou, F. P. Luyten, L. Geris, Coupling curvature-dependent and shear stress-stimulated neotissue growth in dynamic bioreactor cultures: a 3D computational model of a complete scaffold, Biomechanics and Modeling in Mechanobiology, 2016, 15, 1, 169

    CrossRef

  4. 4
    Andrea Di Luca, Barbara Ostrowska, Ivan Lorenzo-Moldero, Antonio Lepedda, Wojcech Swieszkowski, Clemens Van Blitterswijk, Lorenzo Moroni, Gradients in pore size enhance the osteogenic differentiation of human mesenchymal stromal cells in three-dimensional scaffolds, Scientific Reports, 2016, 6, 22898

    CrossRef

  5. 5
    Sajad Arabnejad, R. Burnett Johnston, Jenny Ann Pura, Baljinder Singh, Michael Tanzer, Damiano Pasini, High-strength porous biomaterials for bone replacement: A strategy to assess the interplay between cell morphology, mechanical properties, bone ingrowth and manufacturing constraints, Acta Biomaterialia, 2016, 30, 345

    CrossRef

  6. 6
    L. Geris, Y. Guyot, J. Schrooten, I. Papantoniou, In silicoregenerative medicine: how computational tools allow regulatory and financial challenges to be addressed in a volatile market, Interface Focus, 2016, 6, 2, 20150105

    CrossRef

  7. 7
    Andrea Di Luca, Karol Szlazak, Ivan Lorenzo-Moldero, Corina A. Ghebes, Antonio Lepedda, Wojcech Swieszkowski, Clemens Van Blitterswijk, Lorenzo Moroni, Influencing chondrogenic differentiation of human mesenchymal stromal cells in scaffolds displaying a structural gradient in pore size, Acta Biomaterialia, 2016, 36, 210

    CrossRef

  8. 8
    R. Hedayati, M. Sadighi, M. Mohammadi-Aghdam, A.A. Zadpoor, Mechanical properties of regular porous biomaterials made from truncated cube repeating unit cells: Analytical solutions and computational models, Materials Science and Engineering: C, 2016, 60, 163

    CrossRef

  9. 9
    Philipp J. Albert, Ulrich S. Schwarz, Modeling cell shape and dynamics on micropatterns, Cell Adhesion & Migration, 2016, 1

    CrossRef

  10. 10
    Sascha Zaiss, Toby Brown, Johannes Reichert, Arne Berner, Poly(ε-caprolactone) Scaffolds Fabricated by Melt Electrospinning for Bone Tissue Engineering, Materials, 2016, 9, 4, 232

    CrossRef

  11. 11
    Amandine Magnaudeix, Julie Usseglio, Marie Lasgorceix, Fabrice Lalloue, Chantal Damia, Joël Brie, Patricia Pascaud-Mathieu, Eric Champion, Quantitative analysis of vascular colonisation and angio-conduction in porous silicon-substituted hydroxyapatite with various pore shapes in a chick chorioallantoic membrane (CAM) model, Acta Biomaterialia, 2016,

    CrossRef

  12. 12
    Marie Lasgorceix, Eric Champion, Thierry Chartier, Shaping by microstereolithography and sintering of macro–micro-porous silicon substituted hydroxyapatite, Journal of the European Ceramic Society, 2016, 36, 4, 1091

    CrossRef

  13. 13
    Randall A. Meyer, Jordan J. Green, Shaping the future of nanomedicine: anisotropy in polymeric nanoparticle design, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2016, 8, 2
  14. 14
    Jasper Foolen, Tadahiro Yamashita, Philip Kollmannsberger, Shaping tissues by balancing active forces and geometric constraints, Journal of Physics D: Applied Physics, 2016, 49, 5, 053001

    CrossRef

  15. 15
    Negar Mansouri, SamiraBagheri, The influence of topography on tissue engineering perspective, Materials Science and Engineering: C, 2016, 61, 906

    CrossRef

  16. 16
    Chiara Giverso, Pasquale Ciarletta, Tumour angiogenesis as a chemo-mechanical surface instability, Scientific Reports, 2016, 6, 22610

    CrossRef

  17. 17
    Andrea Di Luca, Ivan Lorenzo-Moldero, Carlos Mota, Antonio Lepedda, Dietmar Auhl, Clemens Van Blitterswijk, Lorenzo Moroni, Tuning Cell Differentiation into a 3D Scaffold Presenting a Pore Shape Gradient for Osteochondral Regeneration, Advanced Healthcare Materials, 2016, 5, 8
  18. 18
    Sachiro Kakinoki, Yusuke Sakai, Toshia Fujisato, Tetsuji Yamaoka, Accelerated tissue integration into porous materials by immobilizing basic fibroblast growth factor using a biologically safe three-step reaction, Journal of Biomedical Materials Research Part A, 2015, 103, 12
  19. 19
    Manuela Herklotz, Marina C. Prewitz, Cécile M. Bidan, John W.C. Dunlop, Peter Fratzl, Carsten Werner, Availability of extracellular matrix biopolymers and differentiation state of human mesenchymal stem cells determine tissue-like growth in vitro, Biomaterials, 2015, 60, 121

    CrossRef

  20. 20
    Qiancheng Zhang, Xiaohu Yang, Peng Li, Guoyou Huang, Shangsheng Feng, Cheng Shen, Bin Han, Xiaohui Zhang, Feng Jin, Feng Xu, Tian Jian Lu, Bioinspired engineering of honeycomb structure – Using nature to inspire human innovation, Progress in Materials Science, 2015, 74, 332

    CrossRef

  21. 21
    Carlos del Rosario, María Rodríguez-Évora, Ricardo Reyes, Araceli Delgado, Carmen Évora, BMP-2, PDGF-BB, and bone marrow mesenchymal cells in a macroporousβ-TCP scaffold for critical-size bone defect repair in rats, Biomedical Materials, 2015, 10, 4, 045008

    CrossRef

  22. 22
    Amir A. Zadpoor, Bone tissue regeneration: the role of scaffold geometry, Biomater. Sci., 2015, 3, 2, 231

    CrossRef

  23. 23
    Maria Isabella Gariboldi, Serena M. Best, Effect of Ceramic Scaffold Architectural Parameters on Biological Response, Frontiers in Bioengineering and Biotechnology, 2015, 3,

    CrossRef

  24. 24
    Ruijing Guo, Sichang Lu, Jonathan M. Page, Alyssa R. Merkel, Sandip Basu, Julie A. Sterling, Scott A. Guelcher, Fabrication of 3D Scaffolds with Precisely Controlled Substrate Modulus and Pore Size by Templated-Fused Deposition Modeling to Direct Osteogenic Differentiation, Advanced Healthcare Materials, 2015, 4, 12
  25. 25
    Julia Huber, Erika Griesshaber, Fitriana Nindiyasari, Wolfgang W. Schmahl, Andreas Ziegler, Functionalization of biomineral reinforcement in crustacean cuticle: Calcite orientation in the partes incisivae of the mandibles of Porcellio scaber and the supralittoral species Tylos europaeus (Oniscidea, Isopoda), Journal of Structural Biology, 2015, 190, 2, 173

    CrossRef

  26. 26
    Guenaelle Bouet, David Marchat, Magali Cruel, Luc Malaval, Laurence Vico, In VitroThree-Dimensional Bone Tissue Models: From Cells to Controlled and Dynamic Environment, Tissue Engineering Part B: Reviews, 2015, 21, 1, 133

    CrossRef

  27. 27
    Pascal R. Buenzli, Osteocytes as a record of bone formation dynamics: A mathematical model of osteocyte generation in bone matrix, Journal of Theoretical Biology, 2015, 364, 418

    CrossRef

  28. 28
    Zena Wally, William van Grunsven, Frederik Claeyssens, Russell Goodall, Gwendolen Reilly, Porous Titanium for Dental Implant Applications, Metals, 2015, 5, 4, 1902

    CrossRef

  29. 29
    Gustavo A. Higuera, Hugo Fernandes, Tim W.G.M. Spitters, Jeroen van de Peppel, Nils Aufferman, Roman Truckenmueller, Maryana Escalante, Reinout Stoop, Johannes P. van Leeuwen, Jan de Boer, Vinod Subramaniam, Marcel Karperien, Clemens van Blitterswijk, Anton van Boxtel, Lorenzo Moroni, Spatiotemporal proliferation of human stromal cells adjusts to nutrient availability and leads to stanniocalcin-1 expression in vitro and in vivo, Biomaterials, 2015, 61, 190

    CrossRef

  30. 30
    Yongxiang Luo, Dong Zhai, Zhiguang Huan, Haibo Zhu, Lunguo Xia, Jiang Chang, Chengtie Wu, Three-Dimensional Printing of Hollow-Struts-Packed Bioceramic Scaffolds for Bone Regeneration, ACS Applied Materials & Interfaces, 2015, 7, 43, 24377

    CrossRef

  31. 31
    F. Dieter Fischer, Gerald A. Zickler, John W. C. Dunlop, Peter Fratzl, Tissue growth controlled by geometric boundary conditions: a simple model recapitulating aspects of callus formation and bone healing, Journal of The Royal Society Interface, 2015, 12, 107, 20150108

    CrossRef

  32. 32
    Sara M. Oliveira, Rui L. Reis, João F. Mano, Towards the design of 3D multiscale instructive tissue engineering constructs: Current approaches and trends, Biotechnology Advances, 2015, 33, 6, 842

    CrossRef

  33. 33
    Y. Guyot, I. Papantoniou, Y. C. Chai, S. Van Bael, J. Schrooten, L. Geris, A computational model for cell/ECM growth on 3D surfaces using the level set method: a bone tissue engineering case study, Biomechanics and Modeling in Mechanobiology, 2014, 13, 6, 1361

    CrossRef

  34. 34
    Salima Nedjari, Sandy Eap, Anne Hébraud, Corinne R. Wittmer, Nadia Benkirane-Jessel, Guy Schlatter, Electrospun Honeycomb as Nests for Controlled Osteoblast Spatial Organization, Macromolecular Bioscience, 2014, 14, 11
  35. 35
    Catarina R. Almeida, Tiziano Serra, Marta I. Oliveira, Josep A. Planell, Mário A. Barbosa, Melba Navarro, Impact of 3-D printed PLA- and chitosan-based scaffolds on human monocyte/macrophage responses: Unraveling the effect of 3-D structures on inflammation, Acta Biomaterialia, 2014, 10, 2, 613

    CrossRef

  36. 36
    Katharina Schmidt-Bleek, Ansgar Petersen, Anke Dienelt, Carolin Schwarz, Georg N Duda, Initiation and early control of tissue regeneration – bone healing as a model system for tissue regeneration, Expert Opinion on Biological Therapy, 2014, 14, 2, 247

    CrossRef

  37. 37
    J. Chen, Nanobiomechanics of living cells: a review, Interface Focus, 2014, 4, 2, 20130055

    CrossRef

  38. 38
    Tiziano Serra, Miguel A Mateos-Timoneda, Josep A Planell, Melba Navarro, 3D printed PLA-based scaffolds, Organogenesis, 2013, 9, 4, 239

    CrossRef

  39. 39
    Cécile M. Bidan, Frances M. Wang, John W.C. Dunlop, A three-dimensional model for tissue deposition on complex surfaces, Computer Methods in Biomechanics and Biomedical Engineering, 2013, 16, 10, 1056

    CrossRef

  40. You have free access to this content40
    Ali Khademhosseini, Nicholas A. Peppas, Micro- and Nanoengineering of Biomaterials for Healthcare Applications, Advanced Healthcare Materials, 2013, 2, 1