A Template-Free Method Towards Conducting Polymer Nanostructures


  • The author acknowledges support from the National Natural Science Foundation of China (No. 50533030 and 50133010), Grant of Overseas Outstanding Scientist of the Chinese Academy of Sciences, and sincerely thanks her students for their excellent contributions to the paper. Special thanks are due to Prof. Y. Wei at The Center for Advanced Polymers and Materials Chemistry, Department of Chemistry, Drexel University, USA, and Prof. L. Jiang at the Institute of Chemistry, Chinese Academy of Sciences, P. R. China, for genuine cooperation.


Conducting polymer nanostructures have recently received special attention in nanoscience and nanotechnology because of their highly π-conjugated polymeric chains and metal-like conductivity, such that they can be regarded not only as excellent molecular wires, but also as basic units for the formation of nanodevices. Although various approaches, such as hard-template methods, soft-template methods, electrospinning technology, and so on are widely employed to synthesize or fabricate conducting polymer nanostructures and their composite nanostructures, each of the currently used methods possess disadvantages. Therefore, finding a facile, efficient, and controlled method of forming conducting polymer nanostructures is desirable. Similar to other nanomaterials, the effect of size (in these cases 1–100 nm) on the properties of the conducting polymer nanostructures must be considered. Electrical measurements of single nanotubes or nanowires are desirable in order to be able to understand the pure electrical properties of conducting polymer nanostructures. Compared with bulk conducting polymers, conducting polymer nanostructures are expected to display improved performance in technological applications because of the unique properties arising from their nanometer-scaled size: high conductivity, large surface area, and light weight. Thus, it is also desirable to develop promising applications for conducting polymer nanostructures. In accordance with the issues described above, our research focuses on a new synthesis method to form conducting polymer nanostructures and on the related formation mechanism of the resultant nanostructures. The electrical and transport properties of single nanotubes of conducting polymer, measured by a four-probe method, and promising applications of such template-free-synthesized conducting polymer nanostructures as new microwave absorbing materials and sensors guided by a reversible wettability are also of interest. This article reports some of our main results and reviews some important contributions of others.

original image