• biomaterials;
  • biomimetics;
  • self-assembly


The rapid increase of interest in the field of biohybrid and biomimetic materials that exhibit improved structural and functional properties is attracting more and more researchers from life science, materials science, and nanoscience. Concomitant results offer valuable opportunities for applications that involve disciplines dealing with engineering, biotechnology, medicine and pharmacy, agriculture, nanotechnology, and others. In the current contribution we collect recent illustrative examples of assemblies between materials of biological origin and inorganic solids of different characteristics (texture, structure, and particle size). We introduce here a general overview on strategies for the preparation and conformation of biohybrids, the synergistic effects that determine the final properties of these materials, and their diverse applications, which cover areas as different as tissue engineering, drug delivery systems, biosensing devices, biocatalysis, green nanocomposites, etc.