Get access
Advanced Materials

The Salvinia Paradox: Superhydrophobic Surfaces with Hydrophilic Pins for Air Retention Under Water

Authors

  • Wilhelm Barthlott,

    Corresponding author
    1. Nees-Institut für Biodiversität der Pflanzen Rheinische Friedrich-Wilhelms-Universität Meckenheimer Allee 170, 53115 Bonn (Germany)
    • Nees-Institut für Biodiversität der Pflanzen Rheinische Friedrich-Wilhelms-Universität Meckenheimer Allee 170, 53115 Bonn (Germany).
    Search for more papers by this author
  • Thomas Schimmel,

    Corresponding author
    1. Institute of Applied Physics and Center for Functional Nanostructures (CFN) University of Karlsruhe Karlsruhe Institute of Technology (KIT) 76131 Karlsruhe (Germany)
    2. Institute of Nanotechnology and Center for Functional Nanostructures (CFN) Forschungszentrum Karlsruhe Karlsruhe Institute of Technology (KIT) 76021 Karlsruhe (Germany)
    • Institute of Applied Physics and Center for Functional Nanostructures (CFN) University of Karlsruhe Karlsruhe Institute of Technology (KIT) 76131 Karlsruhe (Germany).
    Search for more papers by this author
  • Sabine Wiersch,

    1. Nees-Institut für Biodiversität der Pflanzen Rheinische Friedrich-Wilhelms-Universität Meckenheimer Allee 170, 53115 Bonn (Germany)
    Search for more papers by this author
  • Kerstin Koch,

    1. Biologie und Nanobiotechnologie Hochschule Rhein-Waal Landwehr 4, 47533 Kleve (Germany)
    Search for more papers by this author
  • Martin Brede,

    Corresponding author
    1. Lehrstuhl Strömungsmechanik Fakultät für Maschinenbau und Schiffstechnik Universität Rostock Albert-Einstein-Straße 2, 18059 Rostock (Germany)
    • Lehrstuhl Strömungsmechanik Fakultät für Maschinenbau und Schiffstechnik Universität Rostock Albert-Einstein-Straße 2, 18059 Rostock (Germany).
    Search for more papers by this author
  • Matthias Barczewski,

    1. Institute of Applied Physics and Center for Functional Nanostructures (CFN) University of Karlsruhe Karlsruhe Institute of Technology (KIT) 76131 Karlsruhe (Germany)
    2. Institute of Nanotechnology and Center for Functional Nanostructures (CFN) Forschungszentrum Karlsruhe Karlsruhe Institute of Technology (KIT) 76021 Karlsruhe (Germany)
    Search for more papers by this author
  • Stefan Walheim,

    1. Institute of Applied Physics and Center for Functional Nanostructures (CFN) University of Karlsruhe Karlsruhe Institute of Technology (KIT) 76131 Karlsruhe (Germany)
    2. Institute of Nanotechnology and Center for Functional Nanostructures (CFN) Forschungszentrum Karlsruhe Karlsruhe Institute of Technology (KIT) 76021 Karlsruhe (Germany)
    Search for more papers by this author
  • Aaron Weis,

    1. Institute of Applied Physics and Center for Functional Nanostructures (CFN) University of Karlsruhe Karlsruhe Institute of Technology (KIT) 76131 Karlsruhe (Germany)
    2. Institute of Nanotechnology and Center for Functional Nanostructures (CFN) Forschungszentrum Karlsruhe Karlsruhe Institute of Technology (KIT) 76021 Karlsruhe (Germany)
    Search for more papers by this author
  • Anke Kaltenmaier,

    1. Institute of Applied Physics and Center for Functional Nanostructures (CFN) University of Karlsruhe Karlsruhe Institute of Technology (KIT) 76131 Karlsruhe (Germany)
    2. Institute of Nanotechnology and Center for Functional Nanostructures (CFN) Forschungszentrum Karlsruhe Karlsruhe Institute of Technology (KIT) 76021 Karlsruhe (Germany)
    Search for more papers by this author
  • Alfred Leder,

    1. Lehrstuhl Strömungsmechanik Fakultät für Maschinenbau und Schiffstechnik Universität Rostock Albert-Einstein-Straße 2, 18059 Rostock (Germany)
    Search for more papers by this author
  • Holger F. Bohn

    1. Nees-Institut für Biodiversität der Pflanzen Rheinische Friedrich-Wilhelms-Universität Meckenheimer Allee 170, 53115 Bonn (Germany)
    Search for more papers by this author

Abstract

A novel mechanism for long-term air retention under water is found in the sophisticated surface design of the water fern Salvinia. Its floating leaves are evenly covered with complex hydrophobic hairs retaining a layer of air when submerged under water. Surprisingly the terminal cells of the hairs are hydrophilic. These hydrophilic patches stabilize the air layer by pinning the air–water interface. This “Salvinia Effect” provides an innovative concept to develop biomimetic surfaces with long-term air-retention capabilities for under water applications. © Martin Oeggerli / www.Micronaut.ch, original SEM scan by Prof. Barthlott.

original image
Get access to the full text of this article

Ancillary