Get access
Advertisement

Hyaluronic Acid Hydrogels for Biomedical Applications

Authors

  • Jason A. Burdick,

    Corresponding author
    1. Department of Bioengineering, University of Pennsylvania, 210 S 33th Street, Philadelphia, PA 19104, USA
    • Department of Bioengineering, University of Pennsylvania, 210 S 33th Street, Philadelphia, PA 19104, USA.
    Search for more papers by this author
  • Glenn D. Prestwich

    Corresponding author
    1. Department of Medicinal Chemistry and Center for Therapeutic Biomaterials, University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, UT 84108, USA
    • Department of Medicinal Chemistry and Center for Therapeutic Biomaterials, University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, UT 84108, USA.
    Search for more papers by this author

Abstract

Hyaluronic acid (HA), an immunoneutral polysaccharide that is ubiquitous in the human body, is crucial for many cellular and tissue functions and has been in clinical use for over thirty years. When chemically modified, HA can be transformed into many physical forms—viscoelastic solutions, soft or stiff hydrogels, electrospun fibers, non-woven meshes, macroporous and fibrillar sponges, flexible sheets, and nanoparticulate fluids—for use in a range of preclinical and clinical settings. Many of these forms are derived from the chemical crosslinking of pendant reactive groups by addition/condensation chemistry or by radical polymerization. Clinical products for cell therapy and regenerative medicine require crosslinking chemistry that is compatible with the encapsulation of cells and injection into tissues. Moreover, an injectable clinical biomaterial must meet marketing, regulatory, and financial constraints to provide affordable products that can be approved, deployed to the clinic, and used by physicians. Many HA-derived hydrogels meet these criteria, and can deliver cells and therapeutic agents for tissue repair and regeneration. This progress report covers both basic concepts and recent advances in the development of HA-based hydrogels for biomedical applications.

Get access to the full text of this article

Ancillary