Get access
Advertisement

Minkowski Tensor Shape Analysis of Cellular, Granular and Porous Structures

Authors

  • G. E. Schröder-Turk,

    Corresponding author
    1. Institut für Theoretische Physik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7, 91058 Erlangen, Germany
    • Institut für Theoretische Physik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7, 91058 Erlangen, Germany.
    Search for more papers by this author
  • W. Mickel,

    1. Institut für Theoretische Physik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7, 91058 Erlangen, Germany
    2. Université de Lyon, F-69000, Lyon, France, Université Lyon 1, F-69622, Villeurbanne, France, CNRS, UMR5586, Laboratoire PMCN.
    Search for more papers by this author
  • S. C. Kapfer,

    1. Institut für Theoretische Physik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7, 91058 Erlangen, Germany
    Search for more papers by this author
  • M. A. Klatt,

    1. Institut für Theoretische Physik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7, 91058 Erlangen, Germany
    Search for more papers by this author
  • F. M. Schaller,

    1. Institut für Theoretische Physik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7, 91058 Erlangen, Germany
    Search for more papers by this author
  • M. J. F. Hoffmann,

    1. Institut für Theoretische Physik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7, 91058 Erlangen, Germany
    Search for more papers by this author
  • N. Kleppmann,

    1. Institut für Theoretische Physik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7, 91058 Erlangen, Germany
    Search for more papers by this author
  • P. Armstrong,

    1. Lehrstuhl für Feststoff- und Grenzflächenverfahrenstechnik, Friedrich-Alexander-Universtität Erlangen-Nürnberg, Cauerstr. 4, 91058 Erlangen, Germany
    Search for more papers by this author
  • A. Inayat,

    1. Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
    Search for more papers by this author
  • D. Hug,

    1. Karlsruhe Institute of Technology, Department of Mathematics, D-76128 Karlsruhe, Germany
    Search for more papers by this author
  • M. Reichelsdorfer,

    1. Institut für Theoretische Physik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7, 91058 Erlangen, Germany
    Search for more papers by this author
  • W. Peukert,

    1. Lehrstuhl für Feststoff- und Grenzflächenverfahrenstechnik, Friedrich-Alexander-Universtität Erlangen-Nürnberg, Cauerstr. 4, 91058 Erlangen, Germany
    Search for more papers by this author
  • W. Schwieger,

    1. Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
    Search for more papers by this author
  • K. Mecke

    Corresponding author
    1. Institut für Theoretische Physik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7, 91058 Erlangen, Germany
    • Institut für Theoretische Physik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7, 91058 Erlangen, Germany.
    Search for more papers by this author

Abstract

Predicting physical properties of materials with spatially complex structures is one of the most challenging problems in material science. One key to a better understanding of such materials is the geometric characterization of their spatial structure. Minkowski tensors are tensorial shape indices that allow quantitative characterization of the anisotropy of complex materials and are particularly well suited for developing structure-property relationships for tensor-valued or orientation-dependent physical properties. They are fundamental shape indices, in some sense being the simplest generalization of the concepts of volume, surface and integral curvatures to tensor-valued quantities. Minkowski tensors are based on a solid mathematical foundation provided by integral and stochastic geometry, and are endowed with strong robustness and completeness theorems. The versatile definition of Minkowski tensors applies widely to different types of morphologies, including ordered and disordered structures. Fast linear-time algorithms are available for their computation. This article provides a practical overview of the different uses of Minkowski tensors to extract quantitative physically-relevant spatial structure information from experimental and simulated data, both in 2D and 3D. Applications are presented that quantify (a) alignment of co-polymer films by an electric field imaged by surface force microscopy; (b) local cell anisotropy of spherical bead pack models for granular matter and of closed-cell liquid foam models; (c) surface orientation in open-cell solid foams studied by X-ray tomography; and (d) defect densities and locations in molecular dynamics simulations of crystalline copper.

Get access to the full text of this article

Ancillary