Microstructuring of Polypyrrole by Maskless Direct Femtosecond Laser Ablation



original image

Ultrafast laser micromachining was optimized for microstructuring polypyrrole as a facile new approach towards tailoring electrochemical and mechanical responses desirable for microactuator, sensors, neural probing, and nerve conduit applications. Laser perforation of high-density and high aspect ratio through-holes generated greater than 5-fold increase in surface area. The flexible machining technique offers micron-size resolution and fast prototyping capability for optimizing properties and opening new directions for polypyrrole-based devices.