Get access
Advanced Materials

Ultrastrong Fibers Assembled from Giant Graphene Oxide Sheets

Authors

  • Zhen Xu,

    1. MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
    Search for more papers by this author
  • Haiyan Sun,

    1. MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
    Search for more papers by this author
  • Xiaoli Zhao,

    1. MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
    Search for more papers by this author
  • Chao Gao

    Corresponding author
    1. MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
    • MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China.
    Search for more papers by this author

Abstract

Continuous, ultrastrong graphene fibers are achieved by wet-spinning of giant graphene oxide liquid crystals, followed by wet-drawing and ion-cross-linking. The giant size and regular alignment of graphene sheets render the fibers with high mechanical strength and good conductivity. Such graphene fibers promise wide applications in functional textiles, flexible and wearable sensors, and supercapacitor devices.

original image
Get access to the full text of this article

Ancillary