SEARCH

SEARCH BY CITATION

Keywords:

  • conjugated polymers;
  • structure-property relationships

Abstract

Knowledge of the phase behavior of polyfluorene solutions and gels has expanded tremendously in recent years. The relationship between the structure formation and photophysics is known at the quantitative level. The factors which we understand control these relationships include virtually all important materials parameters such as solvent quality, side chain branching, side chain length, molecular weight, thermal history and myriad functionalizations. This review describes advances in controlling structure and photophysical properties in polyfluorene solutions and gels. It discusses the demarcation lines between solutions, gels, and macrophase separation in conjugated polymers and reviews essential solid state properties needed for understanding of solutions. It gives an insight into polyfluorene and polyfluorene beta phase in solutions and gels and describes all the structural levels in solvent matrices, ranging from intramolecular structures to the diverse aggregate classes and network structures and agglomerates of these units. It goes on to describe the kinetics and thermodynamics of these structures. It details the manifold molecular parameters used in their control and continues with the molecular confinement and touches on permanently cross-linked networks. Particular focus is placed on the experimental results of archetypical polyfluorenes and solvent matrices and connection between structure and photonics. A connection is also made to the mean field type theories of hairy-rod like polymers. This altogether allows generalizations and provides a guideline for materials scientists, synthetic chemists and device engineers as well, for this important class of semiconductor, luminescent polymers.