SEARCH

SEARCH BY CITATION

Cited in:

CrossRef

This article has been cited by:

  1. 1
    Nicole Adelstein, Jeffrey B. Neaton, Mark Asta, Lutgard C. De Jonghe, Density functional theory based calculation of small-polaron mobility in hematite, Physical Review B, 2014, 89, 24

    CrossRef

  2. 2
    Feng Tian, Maxwell D. Radin, Donald J. Siegel, Enhanced Charge Transport in Amorphous Li2O2, Chemistry of Materials, 2014, 26, 9, 2952

    CrossRef

  3. 3
    Chun Xia, Michael Waletzko, Limei Chen, Klaus Peppler, Peter. J. Klar, Jürgen Janek, Evolution of Li2O2Growth and Its Effect on Kinetics of Li–O2Batteries, ACS Applied Materials & Interfaces, 2014, 140722090059001

    CrossRef

  4. 4
    Festkörperchemie 2013, Nachrichten aus der Chemie, 2014, 62, 3
  5. 5
    Shanmu Dong, Shan Wang, Jing Guan, Shanming Li, Zhenggang Lan, Chun Chen, Chaoqun Shang, Lixue Zhang, Xiaogang Wang, Lin Gu, Guanglei Cui, Liquan Chen, Insight into Enhanced Cycling Performance of Li–O2Batteries Based on Binary CoSe2/CoO Nanocomposite Electrodes, The Journal of Physical Chemistry Letters, 2014, 5, 3, 615

    CrossRef

  6. 6
    Hao Zheng, Dongdong Xiao, Xing Li, Yali Liu, Yang Wu, Jiaping Wang, Kaili Jiang, Chun Chen, Lin Gu, Xianlong Wei, Yong-Sheng Hu, Qing Chen, Hong Li, New Insight in Understanding Oxygen Reduction and Evolution in Solid-State Lithium–Oxygen Batteries Using an in Situ Environmental Scanning Electron Microscope, Nano Letters, 2014, 140707151721001

    CrossRef

  7. 7
    Zhong-Kuan Luo, Chun-Sheng Liang, Fang Wang, Yang-Hai Xu, Jing Chen, Dong Liu, Hong-Yuan Sun, Hui Yang, Xian-Ping Fan, Optimizing Main Materials for a Lithium-Air Battery of High Cycle Life, Advanced Functional Materials, 2014, 24, 14
  8. 8
    Yali Liu, Rui Wang, Yingchun Lyu, Hong Li, Liquan Chen, Rechargeable Li/CO2–O2 (2 : 1) battery and Li/CO2 battery, Energy & Environmental Science, 2014, 7, 2, 677

    CrossRef

  9. 9
    A. Dunst, V. Epp, I. Hanzu, S. A. Freunberger, M. Wilkening, Short-range Li diffusion vs. long-range ionic conduction in nanocrystalline lithium peroxide Li2O2—the discharge product in lithium-air batteries, Energy & Environmental Science, 2014, 7, 8, 2739

    CrossRef

  10. 10
    Yuxiang Hu, Xiaopeng Han, Fangyi Cheng, Qing Zhao, Zhe Hu, Jun Chen, Size effect of lithium peroxide on charging performance of Li–O2 batteries, Nanoscale, 2014, 6, 1, 177

    CrossRef

  11. 11
    S. R. Lingampalli, K. Dileep, Ranjan Datta, Ujjal K. Gautam, Tuning the Oxygen Release Temperature of Metal Peroxides over a Wide Range by Formation of Solid Solutions, Chemistry of Materials, 2014, 26, 8, 2720

    CrossRef

  12. 12
    Maxwell D. Radin, Donald J. Siegel, Charge transport in lithium peroxide: relevance for rechargeable metal–air batteries, Energy & Environmental Science, 2013, 6, 8, 2370

    CrossRef

  13. 13
    Oliver Gerbig, Rotraut Merkle, Joachim Maier, ChemInform Abstract: Electron and Ion Transport in Li2O2., ChemInform, 2013, 44, 34
  14. 14
    Zimin Feng, Vladimir Timoshevskii, Alain Mauger, Christian M. Julien, Kirk H. Bevan, Karim Zaghib, Dynamics of polaron formation in Li_{2}O_{2} from density functional perturbation theory, Physical Review B, 2013, 88, 18

    CrossRef

  15. 15
    Se Young Kim, Ho-Taek Lee, Kwang-Bum Kim, Electrochemical properties of graphene flakes as an air cathode material for Li–O2 batteries in an ether-based electrolyte, Physical Chemistry Chemical Physics, 2013, 15, 46, 20262

    CrossRef

  16. 16
    W. T. Geng, B. L. He, T. Ohno, Grain Boundary Induced Conductivity in Li2O2, The Journal of Physical Chemistry C, 2013, 117, 48, 25222

    CrossRef

  17. 17
    Rui Wen, Misun Hong, Hye Ryung Byon, In Situ AFM Imaging of Li–O2Electrochemical Reaction on Highly Oriented Pyrolytic Graphite with Ether-Based Electrolyte, Journal of the American Chemical Society, 2013, 135, 29, 10870

    CrossRef