Enhanced Electrophoretic Motion Using Supercapacitor-Based Energy Storage System

Authors


Abstract

image

Electrophoretic motion at low potentials is facilitated by redox chemistry occurring in a supercapacitor-based electrochemical energy storage system during charge and discharge. We show that MnO2-modified electrodes can effectively alleviate the electrode surface polarization, the main factor that leads to inefficient electrophoresis at low voltages. A self-powered electrophoretic system based on a discharging battery has been also fabricated.

Ancillary