• metamaterials;
  • chiral structures;
  • optical nanostructures;
  • plasmonics;
  • asymmetric transmission
Thumbnail image of graphical abstract

Asymmetric transmissions of circularly polarized optical waves can be achieved when the waves are incident normal to planar chiral structures, provided that the structures are anisotropic and lossy. In order to clarify how the factor of loss affects the asymmetric transmission, Z. Li, M. Gokkavas, and E. Ozbay studied a typical planar chiral structure by using an optical lumped element model. On page 482, they found that the anisotropy of loss, instead of the whole loss, plays a crucial role for achieving asymmetric transmission.