SEARCH

SEARCH BY CITATION

Keywords:

  • enzymatic phosphorylation;
  • glucose 6-phosphate;
  • monophosphate;
  • non-specific acid phosphatase;
  • primary alcohol;
  • regioselectivity

Abstract

Bacterial non-specific acid phosphatases normally catalyze the dephosphorylation of a variety of substrates. As shown previously the enzymes from Shigella flexneri and Salmonella enterica are also able to catalyze the phosphorylation of inosine to inosine monophosphate and D-glucose to D-glucose 6-phosphate (D-G6P) using cheap pyrophosphate as the phosphate donor. After optimization high yields (95%) are achieved in the latter reaction and we show here that it is possible to use these enzymes in a preparative manner. This prompted us to investigate by using 31P NMR and HPLC also the phosphorylation of a broad range of carbohydrates and alcohols. Many cyclic carbohydrates are phosphorylated in a regioselective manner. Non-cyclic carbohydrates are phosphorylated as well. Phosphorylation of linear alcohols, cyclic and aromatic alcohols is also possible. In all cases the acid phosphatase from Shigella prefers a primary alcohol function above a secondary one. We conclude that these enzymes are an attractive alternative to existing chemical and enzymatic methods in the phosphorylation of a broad range of compounds.