• alkyl halides;
  • chemoselectivity;
  • mechanistic studies;
  • reduction;
  • silanes;
  • solvent-free process


A highly efficient procedure for the reduction of a broad range of alkyl halides by triethylsilane based on a cationic iridium bis(phosphinite) pincer catalyst has been discovered and developed. This reduction chemistry is chemoselective and has unique selectivities compared with conventional radical-based processes and the aluminum trichloride/triethylsilane (AlCl3/Et3SiH) and triphenylmethyl tetrakis[pentafluorophenyl]borate/triethylsilane {[Ph3C] [B(C6F5)4]/Et3SiH} systems. Reductions use three equivalents of triethylsilane relative to the halide and can be carried out with very low catalyst loadings and in a solvent-free manner, which may provide an environmentally attractive and safe alternative to many currently practiced methods for reduction of alkyl halides. Mechanistic studies reveal a unique catalytic cycle. The cationic iridium hydride 2,6-bis[di-(tert-butyl)phosphinyloxy)phenyl(hydrido)iridium, (POCOP)IrH+ {POCOP= 2,6-[OP(t-Bu)2]2C6H3} binds and activates the silane. This complex serves as a potent silylating reagent to generate silyl halonium ions, Et3SiXR+, which are reduced by the neutral iridium dihydride to yield alkane product and regenerate the cationic (POCOP)IrH+, thus closing the catalytic cycle. All key intermediates have been identified by in situ NMR monitoring and kinetic studies have been completed. An application of this reduction system to the catalytic hydrodehalogenation of a metal chloride complex is also described.