• aromatic hydroxylation;
  • epoxidation;
  • flavin-adenine dinucleotide;
  • FAD;
  • flavoproteins;
  • monooxygenases;
  • regioselectivity;
  • stereoselectivity


Monooxygenases perform chemo-, regio- and/or enantioselective oxygenations of organic substrates under mild reaction conditions. These properties and the increasing number of representatives along with effective preparation methods place monooxygenases in the focus of industrial biocatalysis. Mechanistic and structural insights reveal reaction sequences and allow turning them into efficient tools for the production of valuable products. Herein we describe two biocatalytically relevant subclasses of flavoprotein monooxygenases with a close evolutionary relation: subclass A represented by p-hydroxybenzoate hydroxylase (PHBH) and subclass E formed by styrene monooxygenases (SMOs). PHBH family members perform highly regioselective hydroxylations on a wide variety of aromatic compounds. The more recently discovered SMOs catalyze a number of stereoselective epoxidation and sulfoxidation reactions. Mechanistic and structural studies expose distinct characteristics, which provide a promising source for future biocatalyst development.