Advertisement

Pathways to a New Efficiency Regime for Organic Solar Cells

Authors

  • L. Jan Anton Koster,

    1. Molecular Electronics, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
    Search for more papers by this author
  • Sean E. Shaheen,

    1. Department of Physics and Astronomy, University of Denver, 2112 E. Wesley Ave., Denver, CO 80208-6900, USA
    Search for more papers by this author
  • Jan C. Hummelen

    Corresponding author
    1. Molecular Electronics, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
    2. Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
    • Molecular Electronics, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
    Search for more papers by this author

Abstract

Three different theoretical approaches are presented to identify pathways to organic solar cells with power conversion efficiencies in excess of 20%. A radiation limit for organic solar cells is introduced that elucidates the role of charge-transfer (CT) state absorption. Provided this CT action is sufficiently weak, organic solar cells can be as efficient as their inorganic counterparts. Next, a model based on Marcus theory of electronic transfer that also considers exciton generation in both the electron donor and electron acceptor is used to show how reduction of the reorganization energies can lead to substantial efficiency gains. Finally, the dielectric constant is introduced as a central parameter for efficient solar cells. By using a drift–diffusion model, it is found that efficiencies of more than 20% are within reach.

Ancillary