SEARCH

SEARCH BY CITATION

Literature Cited

  • Adschiri, T., S. Hirose, R. M. Malaluan, and K. Arai, “Noncatalytic Conversion of Cellulose in Supercritical and Subcritical Water,” J. Chem. Eng. Jpn., 26(6), 676 ( 1993).
  • Akiya, N., and P. E. Savage, “Kinetics and Mechanism of Cyclohexanol Dehydration in High-Temperature Water,” Ind. Eng. Chem. Res., 40(8), 1822 ( 2001).
  • Akiya, N., and P. E. Savage, “Roles of Water for Chemical Reactions in High-Temperature Water,” Chem. Rev., 102(8), 2725 ( 2002).
  • Antal, M. J., Jr., S. G. Allen, D. Schulman, X. Xu, and R. J. Divilio, “Biomass Gasification in Supercritical Water,” Ind. Eng. Chem. Res., 39(11), 4040 ( 2000).
  • Bhat, M. K., and S. Bhat, “Cellulose Degrading Enzymes and Their Potential Industrial Applications,” Biotechnol. Adv., 15, 583 ( 1997).
  • Bröll, D., C. Kaul, A. Krämer, P. Krammer, T. Richter, M. Jung, H. Vogel, and P. Zehner, “Chemistry in Supercritical Water,” Angew. Chem. Int. Ed., 38, 2998 ( 1999).
  • Bühler, W., E. Dinjus, H. J. Ederer, A. Kruse, and C. Mas, “Ionic Reactions and Pyrolysis of Glycerol as Competing Reaction Pathways in Near- and Supercritical Water,” J. Supercr. Fluids, 22, 37 ( 2002).
  • Danner, H., and R. Braun, “Biotechnology for the Production of Commodity Chemicals from Biomass,” Chem. Soc. Rev., 28, 395 ( 1999).
  • Ehara, K., and S. Saka, “A Comparative Study on Chemical Conversion of Cellulose Between the Batch-Type and Flow-Type Systems in Supercritical Water,” Cellulose, 9, 301 ( 2002).
  • Farone, W., and J. E. Cuzens, “Method of Producing Sugars Using Strong Acid Hydrolysis of Cellulosic and Hemicellulosic Materials,” Biotechnol. Adv., 15(2), 538 ( 1997a).
  • Goldstein, I. S., “Potential for Converting Wood into Plastics,” Science, 189, 847 ( 1975).
  • Goto, K., K. Tajima, M. Sasaki, T. Adschiri, and K. Arai, “Reaction Mechanism of Sugar Derivatives in Subcritical and Supercritical Water,” Kobunshi Ronbunshu, 58(12), 685 ( 2001).
  • Ikushima, Y., K. Hatakeda, O. Sato, T. Yokoyama, and M. Arai, “Acceleration of Synthetic Organic Reactions Using Supercritical Water: Noncatalytic Beckmann and Pinacol Rearrangements,” J. Amer. Chem. Soc., 122(9), 1908 ( 2000).
  • Ito, H., J. Nishiyama, T. Adschiri, and K. Arai, “Synthesis of ϵ-Caprolactam from ϵ-Caprolactone and Ammonia in Supercritical Water,” Kobunshi Ronbunshu, 58(12), 679 ( 2001).
  • Kabyemela, B. M., T. Adschiri, R. M. Malaluan, and K. Arai, “Kinetics of Glucose Epimerization and Decomposition in Subcritical and Supercritical Water,” Ind. Eng. Chem. Res., 36(5), 1552 ( 1997a).
  • Kabyemela, B. M., T. Adschiri, R. M. Malaluan, and K. Arai, “Degradation Kinetics of Dihydroxyacetone and Glyceraldehyde in Subcritical and Supercritical Water,” Ind. Eng. Chem. Res., 36, 2025 ( 1997b).
  • Kabyemela, B. M., T. Adschiri, R. M. Malaluan, K. Arai, and H. Ohzeki, “Rapid and Selective Conversion of Glucose to Erythrose in Supercritical Water,” Ind. Eng. Chem. Res., 36(12), 5063 ( 1997c).
  • Kabyemela, B. M., M. Takigawa, T. Adschiri, and K. Arai, “Mechanism and Kinetics of Cellobiose Decomposition in Sub- and Supercritical Water,” Ind. Eng. Chem. Res., 37(2), 357 ( 1998).
  • Kabyemela, B. M., T. Adschiri, R. M. Malaluan, and K. Arai, “Glucose and Fructose Decomposition in Subcritical and Supercritical Water: Detailed Reaction Pathway, Mechanisms, and Kinetics,” Ind. Eng. Chem. Res., 38(8), 2888 ( 1999).
  • Katritzky, A. R., D. A. Nichols, M. Siskin, R. Murugan, and M. Balasubramanian, “Reactions in High-Temperature Aqueous Media,” Chem. Rev., 101(4), 837 ( 2001).
  • Kim, J. S., Y. Y. Lee, and R. W. Torget, “Cellulose Hydrolysis Under Extremely Low Sulfuric Acid and High-Temperature Conditions,” Appl. Biochem. Biotechnol., 92(1–3), 331 ( 2001).
  • Klemm, D., B. Philipp, T. Heinze, U. Heinze, and W. Wagenknecht, Comprehensive Cellulose Chemistry, Vol. 2, Functionalization of Cellulose, WILEY-VCH, Weinheim ( 1998).
  • Lindsay, W. T., “ Hydrogen Bonding and Water Structure,” ASME Handbook on Water Technology for Thermal Power Systems, P.Cohen, ed., ASME, New York ( 1981).
  • Mandels, M., L. Hontz, and J. Nystrom, “Enzymatic Hydrolysis of Waste Cellulose,” Biotechnol. Bioeng., 26, 1471 ( 1974).
  • Matthes, A., Kolloid-Z., 98, 319339 ( 1942).
  • Ortega, N., M. D. Busto, and M. Perez-Mateos, “Kinetics of Cellulose Saccharification by Trichoderma reesei Cellulases,” Int. Biodeterior. Biodegrad., 47(1), 7 ( 2001).
  • Saka, S., and T. Ueno, “Chemical Conversion of Various Celluloses to Glucose and Its Derivatives in Supercritical Water,” Cellulose, 6, 177 ( 1999).
  • Sakaki, T., M. Shibata, T. Sumi, and S. Yasuda, “Saccharification of Cellulose Using a Hot-Compressed Water-Flow Reactor,” Ind. Eng. Chem. Res., 41, 661 ( 2002).
  • Sasaki, M., B. M. Kabyemela, R. M. Malaluan, S. Hirose, N. Takeda, T. Adschiri, and K. Arai, “Cellulose Hydrolysis in Subcritical and Supercritical Water,” J. Supercrit. Fluids, 13, 261 ( 1998).
  • Sasaki, M., Z. Fang, Y. Fukushima, T. Adschiri, and K. Arai, “Dissolution and Hydrolysis of Cellulose in Sub- and Supercritical Water,” Ind. Eng. Chem. Res., 39(8), 2883 ( 2000).
  • Sasaki, M., K. Goto, K. Tajima, T. Adschiri, and K. Arai, “Rapid and Selective Retro-Aldol Condensation of Glucose to Glycolaldehyde in Supercritical Water,” Green Chem., 4(3), 285 ( 2002a).
  • Sasaki, M., M. Furukawa, K. Minami, T. Adschiri, and K. Arai, “Kinetics and Mechanism of Cellobiose Hydrolysis and Retro-Aldol Condensation in Subcritical and Supercritical Water,” Ind. Eng. Chem. Res., 41, 6642 ( 2002b).
  • Sasaki, M., J. Nishiyama, M. Uchida, K. Goto, K. Tajima, T. Adschiri, and K. Arai, “Conversion of Hydroxyl Group in 1-Hexyl Alcohol to Amide Group in Supercritical Water Without Catalyst,” Green Chem., 5(1), 95 ( 2003).
  • Sato, H., K. Kondo, S. Tsuge, H. Ohtani, and N. Sato, “Mechanisms of Thermal Degradation of a Polyester Flame-Retarded with Antimony Oxide/Brominated Polycarbonate Studied by Temperature-Programmed Analytical Pyrolysis,” Polym. Degradation Stab., 62, 41 ( 1998).
  • Sato, T., G. Sekiguchi, T. Adschiri, and K. Arai, “Non-Catalytic and Selective Alkylation of Phenol with Propane-2-ol in Supercritical Water,” Chem. Commun., 1566 ( 2001).
  • Savage, P. E., “Organic Chemical Reactions in Supercritical Water,” Chem. Rev., 99(2), 603 ( 1999).
  • Schmieder, H., J. Abeln, N. Boukis, E. Dinjus, A. Kruse, M. Kluth, G. Petrich, E. Sadri, and M. Schacht, “Hydrothermal Gasification of Biomass and Organic Wastes,” J. Supercrit. Fluids, 17, 145 ( 2000).
  • Segal, L., J. J. Creely, A. E. Martin, Jr., and C. M. Conrad, “An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer,” Textile Res. J., 29(10), 786 ( 1959).
  • Taylor, J. D., J. I. Steinfeld, and J. W. Tester, “Experimental Measurement of the Rate of Methyl tert-Butyl Ether Hydrolysis in Sub- and Supercritical Water,” Ind. Eng. Chem. Res., 40(1), 67 ( 2001).
  • Yoshioka, T., N. Okayama, and A. Okuwaki, “Kinetics of Hydrolysis of PET Powder in Nitric Acid by a Modified Shrinking-Core Model,” Ind. Eng. Chem. Res., 37, 336 ( 1998).
  • Yoshioka, T., T. Motoki, and A. Okuwaki, “Kinetics of Hydrolysis of Poly(ethylene terephthalate) Powder in Sulfuric Acid by a Modified Shrinking-Core Model,” Ind. Eng. Chem. Res., 40, 75 ( 2001).