SEARCH

SEARCH BY CITATION

Literature Cited

  • Agrawal, R., D. A. Kofke, “Thermodynamic and Structural Properties of Model Systems at Solid-Fluid Coexistence. II. Melting and Sublimation of the Lennard-Jones System,”; Mol. Phys., 85, 43 ( 1995).
  • Allen, M. P., and D. J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford ( 1987).
  • Barrat, J. L., M. Baus, and J. P. Hansen, “Density-Functional Theory of Freezing of Hard-Sphere Mixtures in Substitutional Solid Solutions,” Phys. Rev. Lett., 56, 1063 ( 1986).
  • Barrat, J. L., M. Baus, and J. P. Hansen, “Freezing of Hard-Sphere Mixtures into Disordered Crystals: A Density-Functional Approach,” J. Phys. C: Solid State Phys., 20, 1413 ( 1987).
  • Bruce, A. D., and N. B. Wilding, “Scaling Fields and Universality of the Liquid-Gas Critical Point,” Phys. Rev. Lett., 68, 193 ( 1992).
  • Carnahan, B., H. A. Luther, and J. O. Wilkes, Applied Numerical Methods, Wiley, New York ( 1969).
  • Chen, B., J. I. Siepmann, and M. L. Klein, “Direct Gibbs ensemble Monte Carlo Simulations for Solid-Vapor Phase Equilibria: Applications to Lennard-Jonesium and Carbon Dioxide,” J. Phys. Chem. B, 105, 9840 ( 2001).
  • Cottin, X., and P. A. Monson, “Substitutionally Ordered Solid Solutions of Hard Spheres,” J. Chem. Phys., 102, 3354 ( 1995).
  • Escobedo, F. A., “Tracing Coexistence Lines in Multicomponent Fluid Mixtures by Molecular Simulation,” J. Chem. Phys., 110, 11999 ( 1999).
  • Findlay, A., A. N. Campbell, and N. O. Smith, The Phase Rule and Its Applications, Dover, New York ( 1951).
  • Frenkel, D., and B. Smit, Understanding Molecular Simulations, Academic Press, San Diego ( 1996).
  • Garcia, D. C., and K. D. Luks, “Patterns of Solid-Fluid Phase Equilibria: New Possibilities?” Fluid Phase Equilib., 161, 91 ( 1999).
  • Hansen, J. P., and L. Verlet, “Phase Transitions of the Lennard-Jones System,” Phys. Rev., 184, 151 ( 1969).
  • Hitchcock, M. R., and C. K. Hall, “Solid-Liquid Phase Equilibrium for Binary Lennard-Jones Mixtures,” J. Chem. Phys., 110, 11433 ( 1999).
  • Kofke, D. A., “Solid-Fluid Coexistence in Binary Hard Sphere Mixtures by Semigrand Monte Carlo Simulation,” Mol. Simul., 7, 285 ( 1991).
  • Kofke, D. A., “Direct Evaluation of Phase Coexistence by Molecular Simulation via Integration Along the Saturation Line,” J. Chem. Phys., 98, 4149 ( 1993).
  • Kofke, D. A., “Semigrand Canonical Monte Carlo Simulation. Integration Along Coexistence Lines,” Adv. Chem. Phys., 105, 405 ( 1998).
  • Kofke, D. A., and E. D. Glandt, “Monte Carlo Simulations of Multicomponent Equilibria in a Semigrand Canonical Ensemble,” Mol. Phys., 64, 1105 ( 1988).
  • Kranendonk, W. G. T., and D. Frenkel, “Computer Simulation of Solid-Liquid Coexistence in Binary Hard-Sphere Mixtures,” Mol. Phys., 72, 679 ( 1991).
  • Labadie, J. A., D. C. Garcia, and K. D. Luks, “Patterns of Solid-Fluid Phase Equilibria II. Interplay with Fluid Phase Criticality and Stability,” Fluid Phase Equilib., 171, 11 ( 2000).
  • Lamm, M. H., and C. K. Hall, “Molecular Simulation of Complete Phase Diagrams for Binary Mixtures,” AIChE J., 47, 1664 ( 2001).
  • Luks, K. D., “Experimental Techniques in Solid-Liquid Equilibrium,” Proc. Int. Conf. on Phase Equilibria and Fluid Properties in the Chemical Industry, EFCE Series No. 11, Part II, 699 ( 1980).
  • Martin, M. G., and J. I. Siepmann, “Novel Configurational-Bias Monte Carlo Method for Branched Molecules. Transferable Potentials for Phase Equilibria. 2. United-Atom Description of Branched Alkanes,” J. Phys. Chem. B, 103, 4508 ( 1999).
  • Mehta, M., and D. A. Kofke, “Coexistence Diagrams of Mixtures by Molecular Simulation,” Chem. Eng. Sci., 49, 2633 ( 1994).
  • Panagiotopoulos, A. Z., “Direct Determination of Phase Coexistence Properties of Fluids by Monte Carlo Simulation in a New Ensemble,” Mol. Phys., 61, 813 ( 1987).
  • Peters, C. J., R. N. Lichtenhaler, and J. de Swaan Arons, “Three Phase Equilibria in Binary Mixtures of Ethane and Higher Alkanes,” Fluid Phase Equilib., 29, 495 ( 1986).
  • Potoff, J. J., and A. Z. Panagiotopoulos, “Critical Point and Phase Behavior of the Pure Fluid and a Lennard-Jones Mixture,” J. Chem. Phys., 109, 10914 ( 1998).
  • Prausnitz, J. M., R. N. Lichtenhaler, and E. Gomes de Azevedo, Molecular Thermodynamics of Fluid-Phase Equilibria, Prentice Hall, Englewood Cliffs, NJ ( 1986).
  • Rowlinson, J. S., and F. L. Swinton, Liquids and Liquid Mixtures, Butterworth Scientific, London ( 1982).
  • Schneider, G. M., “Phase Equilibria in Fluid Mixtures at High Pressures,” Adv. Chem. Phys., 17, 1 ( 1970).
  • Schneider, G. M., “High-Pressure Phase Diagrams and Critical Properties of Fluid Mixtures,” Chemical Thermodynamics, Vol. 2, Specialist Periodical Report, M. L.McGlashan, ed., The Chemical Society, London ( 1978).
  • Scott, R. L., “Models for Phase Equilibria in Fluid Mixtures,” Acc. Chem. Res., 20, 97 ( 1987).
  • Shetty, R., and F. A. Escobedo, “Tracing Coexistence Lines in Multicomponent Fluid Mixtures by Molecular Simulation,” J. Chem. Phys., 116, 7957 ( 2002).
  • Silva Fernandes, F. M. S., R. P. S. Fartaria, and F. F. M. Freita, “The Starting State in Simulations of the Fluid-Solid Coexistence by Gibbs-Duhem Integration,” Comput. Phys. Commun., 141, 403 ( 2001).
  • Valyashko, V. M., “Complete Phase Diagrams of Binary Systems with Different Volatility Components,” Z. Phys. Chem. (Leipzig), 267, 481 ( 1986).
  • Valyashko, V. M., “Sub- and Supercritical Equilibria in Aqueous Electrolyte Solutions,” Pure Appl. Chem., 62, 2129 ( 1990).
  • Wilding, N. B., “Critical-Point and Coexistence-Curve Properties of the Lennard-Jones Fluid: A Finite-Size Scaling Study,” Phys. Rev. E, 52, 602 ( 1995).
  • Wilding, N. B., and A. D. Bruce, “Density Fluctuations and Field Mixing the Critical Field,” J. Phys. Cond. Mat., 4, 3087 ( 1992).