• parameter selection;
  • parameter estimation;
  • experimental design;
  • sensitivity analysis;
  • nonlinear dynamic systems


A new approach is introduced for parameter set selection for nonlinear systems that takes nonlinearity of the parameter-output sensitivity, the effect that uncertainties in the nominal values of the parameters have and the effect that inputs and initial conditions have on parameter selection into account. In a first step, a collection of (sub)optimal parameter sets is determined for the nominal values of the parameters using a genetic algorithm. These parameter sets are then further analyzed for uncertainty in the parameters and changes in the initial conditions and inputs using differential analysis as well as a sampling-based approach to determine the key factors influencing sensitivity and the likelihood of a parameter set to be the optimal set under these varying conditions. The outcome of this procedure is a collection of parameter sets, which can be used for parameter estimation and additional information about how likely it is that a set is optimal for parameter estimation. Additionally, the size of the region in parameter space in which a certain set of parameters will remain optimal is determined. © 2007 American Institute of Chemical Engineers AIChE J, 2007