Control of a high-purity ethylene glycol reactive distillation column with insights of process dynamics



Inventory control is often regarded as less important than product quality control in the operation of reactive and nonreactive distillation columns (i.e., often detuned considerably in control system design). For the high-purity ethylene glycol reactive distillation column, the inventory control of top condenser is, however, an exception and plays actually a crucial role in the stable and effective process operation, reminding the necessity to thoroughly investigate the intricate dynamic mechanism and its complicated implications on control system synthesis and design. In this article, the dynamics of a high-purity ethylene glycol reactive distillation column is examined, and it is found that the complicated dynamics, for example, the nonminimum phase behavior and process nonlinearity, can be suppressed considerably with the tight inventory control of the top condenser. Moreover, an extremely low controllability is detected, implying the potential difficulties in process operation and thus the need of process design modification. In terms of these insights obtained, two control schemes are devised and studied. It is demonstrated that sharp improvement could be acquired in control system performance when the tight inventory control has been implemented in the top condenser. © 2009 American Institute of Chemical Engineers AIChE J, 2009