Behavioral patterns of drop impingement onto rigid substrates with a wide range of wettability and different surface temperatures



This article concerns behavioral patterns of droplet impingement onto solid substrates covering a wide range of wettability from hydrophilic to superhydrophobic surfaces heated at different temperatures. For droplet impingement onto partial hydrophobic surfaces (mirror-polished Cu substrate), the maximum heights of receding droplet undergoing a consecutive increment with surface temperature can be explained taking account of Marangoni flow. Also, the relation to predict the increment of droplet heights with surface temperature was manifested in the light of lubrication approximation combined with energy conservation. However, this relation is only valid for droplet impacts onto partial hydrophobic surface, because the recoiling droplet height was observed to be independent of surface temperature for both hydrophilic and superhydrophobic targets. This phenomenon was attributed to inherent wettability accompanying larger contact angle hysteresis for the hydrophilic substrate and to the presence of an adiabatic gas layer between the composite surface and impacting droplet, for the superhydrophobic target. © 2009 American Institute of Chemical Engineers AIChE J, 2009