SEARCH

SEARCH BY CITATION

Keywords:

  • environmental engineering;
  • membrane separations;
  • mathematical modeling;
  • simulation;
  • process

Abstract

Concentration polarization in a narrow reverse osmosis channel is bounded by the channel height and under the influence of variable transverse velocity. An attempt was made in this article to quantify concentration polarization in such a narrow membrane channel. The transverse velocity in the membrane channel was first determined and its impact on concentration polarization was investigated. Based on the concept of retained salt, analytical equations were developed for the wall salt concentration at an arbitrary point in the narrow membrane channel. Finally, development of concentration polarization in typical reverse osmosis channels under various conditions was numerically simulated and discussed. Interesting results on the details of concentration polarization in the narrow reverse osmosis channel that had never been reported before were revealed with this mechanistic model. © 2009 American Institute of Chemical Engineers AIChE J, 2010