Get access

CFD simulation of transverse vibration effects on radial temperature profile and thermal entrance length in laminar flow

Authors


Abstract

Radial heat transfer in laminar pipe flow is characterized by a wide temperature distribution over the pipe cross-section. We use a validated Computational Fluid Dynamics (CFD) model to show that the superimposition of a transverse vibration on the steady laminar flow of a Newtonian fluid moving in a pipe with an isothermal wall, generates considerable chaotic flow and radial mixing which result in a large enhancement in wall heat transfer as well as a considerably more uniform radial temperature field. Transverse vibration also causes the temperature profile to develop very rapidly in the axial direction reducing the thermal entrance length by a large factor. These effects are dependent on vibration amplitude and frequency, and fluid viscosity. © 2010 American Institute of Chemical Engineers AIChE J, 2011

Ancillary