An experimental study of Mesler entrainment on a surfactant-covered interface: The effect of drop shape and Weber number



Mesler entrainment is the formation of large numbers of small bubbles which occurs when a drop strikes a liquid reservoir at a relatively low velocity. Existing studies of Mesler entrainment have focused almost exclusively on water as the working fluid in a nominally clean state, where even very small levels of contamination can cause significant changes in surface tension that affect the repeatability of the results. Herein water combined with the soluble surfactant Triton X-100 is used as the working fluid in an attempt to stabilize the state of the water surface. Despite this approach, nominally identical drops did not always result in the same bubble formation event. Accordingly, Mesler entrainment was quantified by its frequency of occurrence for drops having the same nominal diameter and impact velocity. This frequency of occurrence was found to be well correlated to both the Weber number and the shape of the drop on impact. © 2011 American Institute of Chemical Engineers AIChE J, 2012