A computational fluid dynamics study of supercritical antisolvent precipitation: Mixing effects on particle size

Authors

  • José Sierra-Pallares,

    Corresponding author
    1. Departamento de Ingeniería Energética y Fluidomecánica, Universidad de Valladolid, Paseo del Cauce 59 47011 - Valladolid, Spain
    2. Grupo de Procesos a Alta Presión, Departamento de Ingeniería Química. Universidad de Valladolid, Prado de la Magdalena sn. 47011 - Valladolid, Spain
    • Departamento de Ingeniería Energética y Fluidomećnica, Universidad de Valladolid, Paseo del Cauce 59 47011 - Valladolid, Spain
    Search for more papers by this author
  • Daniele L. Marchisio,

    1. Dipartimento di Scienza Materiali e Ingegneria Chimica Politecnico di Torino, C.so Duca degli Abruzzi 24. I-10129 - Torino (Italy)
    Search for more papers by this author
  • María Teresa Parra-Santos,

    1. Departamento de Ingeniería Energética y Fluidomecánica, Universidad de Valladolid, Paseo del Cauce 59 47011 - Valladolid, Spain
    Search for more papers by this author
  • Juan García-Serna,

    1. Grupo de Procesos a Alta Presión, Departamento de Ingeniería Química. Universidad de Valladolid, Prado de la Magdalena sn. 47011 - Valladolid, Spain
    Search for more papers by this author
  • Francisco Castro,

    1. Departamento de Ingeniería Energética y Fluidomecánica, Universidad de Valladolid, Paseo del Cauce 59 47011 - Valladolid, Spain
    Search for more papers by this author
  • María José Cocero

    1. Grupo de Procesos a Alta Presión, Departamento de Ingeniería Química. Universidad de Valladolid, Prado de la Magdalena sn. 47011 - Valladolid, Spain
    Search for more papers by this author

Abstract

Supercritical fluids have been extensively used for particle production of many natural and pharmaceutical substances providing useful alternatives for pharmaceutical and nutraceutical particulate system formulation. Among the different methods, the gas or supercritical antisolvent (GAS or SAS) process and its variants, have received a considerable interest due to the wide range of materials that can be micronized. Controlling particle formation in order to nucleate small particles is a key issue in GAS and SAS processes and this is directly related to mixing at all scales. In this work, we focus on numerical simulation of the process, emphasizing mixing modeling. Different mixing devices characterized by different nozzles are analyzed, to get an insight into mixing dynamics and its influence on the final particle size distribution. Results show that mixing is determinant in obtaining small particles, and that mixing at the microscale is a significant parameter to account for in the proper design of precipitators. © 2011 American Institute of Chemical Engineers AIChE J, 2012

Ancillary