Literature Cited

  • 1
    Tsakiroglou CD, Theodoropoulou MA, Karoutsos V. Nonequilibrium capillary pressure and relative permeability curves of porous media. AIChE J. 2003;49( 10):24722486. DOI: 10.1002/aic.690491004.
  • 2
    Das DB, Hassanizadeh SM, Rotter BE, Ataie-Ashtiani B. A numerical study of micro-heterogeneity effects on upscaled properties of two-phase flow in porous media. Transp Porous Media. 2004;56:329350.
  • 3
    Das DB, Mirzaei M, Widdows N. Non-uniqueness in capillary pressure–saturation–relative permeability relationships for two-phase flow in porous media: implications of intensity and random distribution of micro-heterogeneity. Chem Eng Sci. 2006;61:67866803.
  • 4
    Das DB, Gauldie R, Mirzaei M. Dynamic effects for two-phase flow in porous media: fluid property effects. AIChE J. 2007;53( 10):25052520. DOI: 10.1002/aic.11292.
  • 5
    Mirzaei M, Das DB. Dynamic effects in capillary pressure–saturations relationships for two-phase flow in 3D porous media: implications of micro-heterogeneities. Chem Eng Sci. 2007;62:19271947.
  • 6
    Hanspal N, Das, DB. Dynamic effects on capillary pressure–saturation relationships for two-phase porous flow: implications of temperature. AIChE J. 2012;58( 6):19511965. DOI: 10.1002/aic.12702.
  • 7
    Das DB, Mirzaei M. Dynamic effects in capillary pressure relationships for two-phase flow in porous media: experiments and numerical analyses. AIChE J. 2012;58( 6):19511965. DOI: 10.1002/aic.12702.
  • 8
    Hanspal N, Allison B, Deka L, Das DB. Artificial neural network (ANN) modeling of dynamic effects on two-phase flow in homogeneous porous media. J Hydroinform. In press.
  • 9
    Darcy H.Les Fontaines Publiques de la Ville de Dijon.Paris:Victor Dalmont, 1856.
  • 10
    Bear J, Verruijt A.Modeling Groundwater Flow and Pollution.Dordrecht, The Netherlands:D. Reidel Publishing Company, 1987.
  • 11
    Hassanizadeh SM, Celia MA, Dahle HK. Dynamic effect in the capillary pressure–saturation and its impact on unsaturated flow. Vadose Zone J. 2002;1:3857.
  • 12
    O'Carroll DM, Mumford KG, Abriola LM, Gerhard JI. Influence of wettability variations on dynamic effects in capillary pressure. Water Resour Res. 2010;46:W08505.
  • 13
    Hassanizadeh SM, Gray WG. Thermodynamic basis of capillary pressure in porous media. Water Resour Res. 1993;29( 10):33893405.
  • 14
    Mumford KG, O'Carroll DM. Drainage under nonequilibrium conditions: exploring wettability and dynamic contact angle effects using bundle-of-tubes simulations. Vadose Zone J. 2011;10( 4):11621172. DOI: 10.2136/vzj2010.0125.
  • 15
    O'Carroll DM, Phelan TJ, Abriola LM. Exploring dynamic effects in capillary pressure in multistep outflow experiments. Water Resour Res. 2005;41:W11419.
  • 16
    Camps-Roach G, O'Carroll DM, Newson TA, Sakaki T, Illangasekare TH. Experimental investigation of dynamic effects in capillary pressure: grain size dependency and upscaling. Water Resour Res. 2010;46:W08544.
  • 17
    Juanes R. Nonequilibrium effects in models of three-phase flow in porous media. Adv Water Res. 2009;31:661673.
  • 18
    Joekar-Nisar V, Hassanizadeh SM. Effect of fluids properties on non-equilibrium capillarity effects: dynamic pore-network modeling. Int J Multiphase Flow. 2011;37:198214.
  • 19
    Joekar-Nisar V, Hassanizadeh SM, Dahle HK. Non-equilibrium effects in capillarity and interfacial area in two-phase flow: dynamic pore-network modeling. J Fluid Mech. 2010;655:3871.
  • 20
    Goel G, O'Carroll DM. Experimental investigation of nonequilibrium capillarity effects: fluid viscosity effects. Water Resour Res. 2011;47:W09507. DOI: 10.1029/2010WR009861.
  • 21
    Manthey S, Hassanizadeh SM, Helmig R. Macro-scale dynamic effects in homogeneous and heterogeneous porous media. Transp Porous Media. 2005;58( 1–2):121145.
  • 22
    Civan F. Temperature dependency of dynamic coefficient for nonequilibrium capillary pressure–saturation relationship. AIChE J. 2012;58( 7):22822285. DOI: 10.1002/aic.13817.
  • 23
    Bottero S, Hassanizadeh SM, Kleingeld PJ, Heimovaara TJ. Nonequilibrium capillarity effects in two-phase flow through porous media at different scales. Water Resour Res. 2011;47:W10505. DOI: 10.1029/2011WR010887.
  • 24
    Gray WG, Miller Cass T. TCAT analysis of capillary pressure in non-equilibrium, two-fluid-phase, porous medium systems. Adv Water Resour. 2011;34( 6):770778. DOI: 10.1016/j.advwatres.2011.04.001.
  • 25
    Peszynska M, Yi SY. Numerical methods for unsaturated flow with dynamic capillary pressure in heterogeneous porous media. Int J Numer Anal Model. 2008;5:126149 (Special Issue).
  • 26
    Fucik R, Mikyska J, Sakaki T, Benes M, Illangasekare TH. Significance of dynamic effect in capillarity during drainage experiments in layered porous media. Vadose Zone J. 2010;6389( 3):697708.
  • 27
    Sakaki T, O'Carroll DM, Illangasekare TH. Direct quantification of dynamic effects in capillary pressure for drainage-wetting cycles. Vadose Zone J. 2010;9( 2):424437.
  • 28
    Brookes RH, Corey AT. Hydraulic Properties of Porous Media. Hydrology Paper, Vol.3.Fort Collins:Civil Engineering Department, Colorado State University, 1964.
  • 29
    Adamson AW, Gast AP.Physical Chemistry of Surfaces, 6th ed. New York:Wiley-Interscience Publications, 1997:784. ISBN 0-471-14873-3.