• fault detection and isolation;
  • hybrid process systems;
  • unknown input observer;
  • data-driven techniques

A combined data-driven and observer-design methodology for fault detection and isolation (FDI) in hybrid process systems with switching operating modes is proposed. The main contribution is to construct a unified framework for FDI by integrating Gaussian mixture models (GMM), subspace model identification (SMI), and results from unknown input observer (UIO) theory. Initially, a GMM is built to identify and describe the multimodality of hybrid systems using the recorded input/output process data. A state-space model is then obtained for each specific operating mode based on SMI if the system matrices are unknown. An UIO is designed to estimate the system states robustly, based on which the fault detection is laid out through a multivariate analysis of the residuals. Finally, by designing a set of unknown input matrices for specific fault scenarios, fault isolation is performed through the disturbance-decoupling principle from the UIO theory. A significant benefit of the developed framework is to overcome some of the limitations associated with individual model-based and data-based approaches in dealing with the problem of FDI in hybrid systems. Finally, the validity and effectiveness of the proposed monitoring framework are demonstrated using a numerical example, a simulated continuous stirred tank heater process, and the Tennessee Eastman benchmark process. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2805–2814, 2014