Get access

Hydrodynamics and reactor performance evaluation of a high flux gas-solids circulating fluidized bed downer: Experimental study



Reactor performance of a high flux circulating fluidized bed (CFB) downer is studied under superficial gas velocities of 3–7 m/s with solids circulation rate up to 300 kg/m2s using ozone decomposition reaction. Results show that the reactant conversion in the downer is closely related to the hydrodynamics, with solids holdup being the most influential parameter on ozone decomposition. High degree of conversion is achieved at the downer entrance region due to strong gas-solids interaction as well as higher solids holdup and reactant concentration. Ozone conversion increases with the increase of solids circulation rate and/or the decrease of superficial gas velocity. Overall conversion in the CFB downer is less than but very close to that in an ideal plug flow reactor indicating a good reactor performance in the downer because of the nearly “ideal” hydrodynamics in downer reactors. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3412–3423, 2014

Get access to the full text of this article