SEARCH

SEARCH BY CITATION

Cited in:

CrossRef

This article has been cited by:

  1. 1
    Ben-Guang Rong, A systematic procedure for synthesis of intensified nonsharp distillation systems with fewer columns, Chemical Engineering Research and Design, 2014, 92, 10, 1955

    CrossRef

  2. 2
    Mirko Skiborowski, Andreas Harwardt, Wolfgang Marquardt, Distillation, 2014,

    CrossRef

  3. 3
    Mirko Skiborowski, Andreas Harwardt, Wolfgang Marquardt, Conceptual Design of Distillation-Based Hybrid Separation Processes, Annual Review of Chemical and Biomolecular Engineering, 2013, 4, 1, 45

    CrossRef

  4. 4
    Andreas Harwardt, Wolfgang Marquardt, Heat-integrated distillation columns: Vapor recompression or internal heat integration?, AIChE Journal, 2012, 58, 12
  5. 5
    Ben-Guang Rong, Massimiliano Errico, Synthesis of intensified simple column configurations for multicomponent distillations, Chemical Engineering and Processing: Process Intensification, 2012, 62, 1

    CrossRef

  6. 6
    Ben-Guang Rong, Massimiliano Errico, 11th International Symposium on Process Systems Engineering, 2012,

    CrossRef

  7. 7
    Andrzej R. Królikowski, Lechosław J. Królikowski, Stanisław K. Wasylkiewicz, Distillation profiles in ternary heterogeneous mixtures with distillation boundaries, Chemical Engineering Research and Design, 2011, 89, 7, 879

    CrossRef

  8. 8
    Xiao-Hong Wang, Yu-Gang Li, Stochastic GP synthesis of heat integrated nonsharp distillation sequences, Chemical Engineering Research and Design, 2010, 88, 1, 45

    CrossRef

  9. 9
    Antanas Z˘ilinskas, Eric S. Fraga, Ausra Mackutė, Data analysis and visualisation for robust multi-criteria process optimisation, Computers & Chemical Engineering, 2006, 30, 6-7, 1061

    CrossRef

  10. 10
    A.I.A. Salama, Determination of the optimal heat energy targets in heat pinch analysis using a geometry-based approach, Computers & Chemical Engineering, 2006, 30, 4, 758

    CrossRef

  11. 11
    Zbigniew T. Fidkowski, Distillation configurations and their energy requirements, AIChE Journal, 2006, 52, 6
  12. 12
    A.I.A. Salama, Numerical techniques for determining heat energy targets in pinch analysis, Computers & Chemical Engineering, 2005, 29, 8, 1861

    CrossRef

  13. 13
    E.S. Fraga, A. Z̆ilinskas, Evaluation of hybrid optimization methods for the optimal design of heat integrated distillation sequences, Advances in Engineering Software, 2003, 34, 2, 73

    CrossRef

  14. 14
    Rakesh Agrawal, Synthesis of multicomponent distillation column configurations, AIChE Journal, 2003, 49, 2
  15. 15
    Xi-Gang Yuan, Wei-Zhong An, Process Systems Engineering 2003, 8th International Symposium on Process Systems Engineering, 2003,

    CrossRef

  16. 16
    Gorazd Sobočan, Peter Glavič, A simple method for systematic synthesis of thermally integrated distillation sequences, Chemical Engineering Journal, 2002, 89, 1-3, 155

    CrossRef

  17. 17
    Rama Lakshmanan, Eric S. Fraga, Pinch location and minimum temperature approach for discontinuous composite curves, Computers & Chemical Engineering, 2002, 26, 6, 779

    CrossRef

  18. 18
    R. Agrawal, A Method to Draw Fully Thermally Coupled Distillation Column Configurations for Multicomponent Distillation, Chemical Engineering Research and Design, 2000, 78, 3, 454

    CrossRef

  19. 19
    Gorazd Sobočan, Peter Glavič, A simple synthesis method for studying thermally integrated distillation sequences, The Canadian Journal of Chemical Engineering, 2000, 78, 5
  20. 20
    E.S. Fraga, J. Hagemann, A. Estrada-Villagrana, I.D.L. Bogle, Incorporation of dynamic behaviour in an automated process synthesis system, Computers & Chemical Engineering, 2000, 24, 2-7, 189

    CrossRef

  21. 21
    Rakesh Agrawal, Multieffect distillation for thermally coupled configurations, AIChE Journal, 2000, 46, 11
  22. 22
    G. Sobočan, P. Glavič, Optimization of ethanol fermentation process design, Applied Thermal Engineering, 2000, 20, 6, 529

    CrossRef

  23. 23
    I. V. Klenkov, V. K. Viktorov, Vertical decomposition in the synthesis of distillation systems, Theoretical Foundations of Chemical Engineering, 2000, 34, 2, 150

    CrossRef

  24. 24
    Milton T.W. Hearn, Handbook of Bioseparations, 2000,

    CrossRef

  25. 25
    Gorazd Sobočan, Peter Glavič, A new method for studying thermally integrated distillation sequences, Computers & Chemical Engineering, 1999, 23, S899

    CrossRef

  26. 26
    C.S. Bildea, A.C. Dimian, Interaction Between Design and Control of a Heat-Integrated Distillation System with Prefractionator, Chemical Engineering Research and Design, 1999, 77, 7, 597

    CrossRef

  27. 27
    K.P. Papalexandri, E.N. Pktikopoulos, A Decomposition–Based Approach for Process Optimization and Simultaneous Heat Integration, Chemical Engineering Research and Design, 1998, 76, 3, 273

    CrossRef

  28. 28
    E.S. Fraga, The Generation and Use of Partial Solutions in Process Synthesis, Chemical Engineering Research and Design, 1998, 76, 1, 45

    CrossRef

  29. 29
    D. Murray Laing, Eric S. Fraga, A case study on synthesis in preliminary design, Computers & Chemical Engineering, 1997, 21, S53

    CrossRef

  30. 30
    S. Aly, Fuzzy analogical gates for separation sequence synthesis, Chemical Engineering and Processing: Process Intensification, 1997, 36, 3, 209

    CrossRef

  31. 31
    Ignacio E. Grossmann, Mark M. Daichendt, New trends in optimization-based approaches to process synthesis, Computers & Chemical Engineering, 1996, 20, 6-7, 665

    CrossRef

  32. 32
    Ignacio E. Grossmann, 1996,

    CrossRef

  33. 33
    Arthur W. Westerberg, Oliver Wahnschafft, 1996,

    CrossRef

  34. 34
    E.S. Fraga, K.I.M. McKinnon, Portable code for process synthesis using workstation clusters and distributed memory multicomputers, Computers & Chemical Engineering, 1995, 19, 6-7, 759

    CrossRef

  35. 35
    X. LIN, R. B. NEWELL, P. L. DOUGLAS, S. K. MALLICK, Application of output structural controllability to a thermally integrated distillation sequence, International Journal of Systems Science, 1994, 25, 9, 1437

    CrossRef

  36. 36
    E.S. Fraga, K.I.M. McKinnon, Process synthesis using parallel graph traversal, Computers & Chemical Engineering, 1994, 18, S119

    CrossRef

  37. 37
    P. Floquet, L. Pibouleau, S. Domenech, Separation sequence synthesis: How to use simulated annealing procedure?, Computers & Chemical Engineering, 1994, 18, 11-12, 1141

    CrossRef

  38. 38
    H. WAHYU, R. M. WOOD, B. K. O'NEILL, J. R. ROACH, FINDING THE OPTIMUM SEQUENCE OF DISTILLATION COLUMNS USING THEA* SEARCH PROCEDURE, Engineering Optimization, 1993, 21, 1, 51

    CrossRef

  39. 39
    P. Floquet, L. Pibouleau, S. Domenech, Recent trends in process optimization, Desalination, 1993, 92, 1-3, 1

    CrossRef

  40. 40
    P. Floquet, L. Pibouleau, S. Domenech, Separation sequence synthesis: How to use simulated annealing procedure?, Computers & Chemical Engineering, 1993, 17, S81

    CrossRef

  41. 41
    a. Aggarwal, C.A. Floudast, Synthesis of heat integrated nonsharp distillation sequences, Computers & Chemical Engineering, 1992, 16, 2, 89

    CrossRef

  42. 42
    Mahesh K. Garg, James G. Linders, Peter L. Douglas, An expert system for identifying separation processes, The Canadian Journal of Chemical Engineering, 1991, 69, 1
  43. 43
    K.E. Porter, S.O. Momoh, Finding the optimum sequence of distillation columns - an equation to replace the “rules of thumb” (heuristics), The Chemical Engineering Journal, 1991, 46, 3, 97

    CrossRef

  44. 44
    Y.W. HUANG, L.T. FAN, Artificial Intelligence in Process Engineering, 1990,

    CrossRef

  45. 45
    M. Bezzina, L. Pibouleau, S. Domenech, A statistical approach to the synthesis of separation sequences, Computers & Chemical Engineering, 1989, 13, 6, 651

    CrossRef

  46. 46
    K. Glinos, M.F. Malone, Net work consumption in distillation—short-cut evaluation and applications to synthesis, Computers & Chemical Engineering, 1989, 13, 3, 295

    CrossRef

  47. 47
    C.A. Floudas, G.E. Paules, A mixed-integer nonlinear programming formulation for the synthesis of heat-integrated distillation sequences, Computers & Chemical Engineering, 1988, 12, 6, 531

    CrossRef

  48. 48
    Y.W. Huang L.T. Fan, Fuzzy logic rule based system for separation sequence synthesis: An object-oriented approach, Computers & Chemical Engineering, 1988, 12, 6, 601

    CrossRef

  49. 49
    P Floquet, L Pibouleau, S Domenech, Mathematical programming tools for chemical engineering process design synthesis, Chemical Engineering and Processing: Process Intensification, 1988, 23, 2, 99

    CrossRef

  50. 50
    Jaroslav Jelínek, Radim Ptáčník, Synthesis of heat integrated rectification systems, Computers & Chemical Engineering, 1988, 12, 5, 427

    CrossRef

  51. 51
    MIGUEL A. ISLA, JAIME CERDA, A GENERAL ALGORITHMIC APPROACH TO THE OPTIMAL SYNTHESIS OF ENERGY-EFFICIENT DISTILLATION TRAIN DESIGNS, Chemical Engineering Communications, 1987, 54, 1-6, 353

    CrossRef

  52. 52
    Liem Dug Vu, Prashant B. Gadkari, Rakesh Govind, Analysis of Ternary Distillation Column Sequences, Separation Science and Technology, 1987, 22, 7, 1659

    CrossRef

  53. 53
    Masaaki Muraki, Toyohiko Hayakawa, Evolutionary synthesis method of energy integrated distillation separation process, The Canadian Journal of Chemical Engineering, 1987, 65, 2
  54. 54
    M. K. Kattan, P. L. Douglas, A new approach to thermal integration of distillation sequences, The Canadian Journal of Chemical Engineering, 1986, 64, 1
  55. 55
    I. Mészáros, Z. Fonyó, A new bounding strategy for synthesizing distillation schemes with energy integration, Computers & Chemical Engineering, 1986, 10, 6, 545

    CrossRef

  56. 56
    I. Mészáros, Z. Fonyó, Design strategy for heat pump assisted distillation system, Journal of Heat Recovery Systems, 1986, 6, 6, 469

    CrossRef

  57. 57
    L. Pibouleau, S. Domenech, Discrete and continuous approaches to the optimal synthesis of distillation sequences, Computers & Chemical Engineering, 1986, 10, 5, 479

    CrossRef

  58. 58
    M. J. Andrecovich, A. W. Westerberg, A Simple Synthesis Method Based on Utility Bounding for Heat-Integrated Distillation Sequences, AIChE Journal, 1985, 31, 3
  59. 59
    P. Floquet, L. Pibouleau, S. Domenech, Procédures d'optimisation de cascades de réacteurs avec ou sans recyclage, The Chemical Engineering Journal, 1985, 30, 1, 11

    CrossRef

  60. 60
    Alejandro Gomez-Munoz, J.D. Seader, Synthesis of distillation trains by thermodynamic analysis, Computers & Chemical Engineering, 1985, 9, 4, 311

    CrossRef

  61. 61
    Arthur W. Westerberg, The synthesis of distillation-based separation systems, Computers & Chemical Engineering, 1985, 9, 5, 421

    CrossRef

  62. 62
    L. Pibouleau, A. Said, S. Domenech, Synthesis of optimal and near-optimal distillation sequences by a bounding strategy, The Chemical Engineering Journal, 1983, 27, 1, 9

    CrossRef

  63. 63
    Abraham M. Lenhoff, Manfred Morari, Design of resilient processing plants—I Process design under consideration of dynamic aspects, Chemical Engineering Science, 1982, 37, 2, 245

    CrossRef

  64. 64
    Don C. Faith, Manfred Morari, Synthesis of distillation schemes with energy integration, Computers & Chemical Engineering, 1979, 3, 1-4, 269

    CrossRef

  65. 65
    V. Hlaváček, Synthesis in the design of chemical processes, Computers & Chemical Engineering, 1978, 2, 1, 67

    CrossRef

  66. 66
    Martin E. Weber, Reducing energy requirements in distillation, The Chemical Engineering Journal, 1977, 14, 1, 77

    CrossRef

  67. 67
    D.C. Freshwater, E. Ziogou, Reducing energy requirements in unit operations, The Chemical Engineering Journal, 1976, 11, 3, 215

    CrossRef

  68. 68
    James R. Fair, Distillation, Kirk-Othmer Encyclopedia of Chemical Technology,