SEARCH

SEARCH BY CITATION

Cited in:

CrossRef

This article has been cited by:

  1. 1
    N. Mac Dowell, N. Shah, Dynamic modelling and analysis of a coal-fired power plant integrated with a novel split-flow configuration post-combustion CO2 capture process, International Journal of Greenhouse Gas Control, 2014, 27, 103

    CrossRef

  2. 2
    Mai Bui, Indra Gunawan, Vincent Verheyen, Paul Feron, Erik Meuleman, Sam Adeloju, Dynamic modelling and optimisation of flexible operation in post-combustion CO2 capture plants—A review, Computers & Chemical Engineering, 2014, 61, 245

    CrossRef

  3. 3
    Zhigang Lei, Chengna Dai, Jiqin Zhu, Biaohua Chen, Extractive distillation with ionic liquids: A review, AIChE Journal, 2014, 60, 8
  4. 4
    Stefania Moioli, Laura A. Pellegrini, Improved rate-based modeling of the process of CO2 capture with PZ solution, Chemical Engineering Research and Design, 2014,

    CrossRef

  5. 5
    Z. Labovská, J. Labovský, Ľ. Jelemenský, J. Dudáš, J. Markoš, Model-based hazard identification in multiphase chemical reactors, Journal of Loss Prevention in the Process Industries, 2014, 29, 155

    CrossRef

  6. 6
    Liang Chang, Xinggao Liu, Non-equilibrium Stage Based Modeling of Heat Integrated Air Separation Columns, Separation and Purification Technology, 2014,

    CrossRef

  7. 7
    Young Han Kim, Sequential simulation of packed distillation columns using rate-based model, Korean Journal of Chemical Engineering, 2014, 31, 6, 944

    CrossRef

  8. 8
    Yang LEI, Bingjian ZHANG, Xiaoqiong HOU, Qinglin CHEN, A Novel Strategy for Simulating the Main Fractionator of Delayed Cokers by Separating the De-superheating Process, Chinese Journal of Chemical Engineering, 2013, 21, 3, 285

    CrossRef

  9. 9
    N. Mac Dowell, N.J. Samsatli, N. Shah, Dynamic modelling and analysis of an amine-based post-combustion CO2 capture absorption column, International Journal of Greenhouse Gas Control, 2013, 12, 247

    CrossRef

  10. 10
    N. Mac Dowell, N. Shah, Identification of the cost-optimal degree of CO2 capture: An optimisation study using dynamic process models, International Journal of Greenhouse Gas Control, 2013, 13, 44

    CrossRef

  11. 11
    E. Quijada-Maldonado, T.A.M. Aelmans, G.W. Meindersma, A.B. de Haan, Pilot plant validation of a rate-based extractive distillation model for water–ethanol separation with the ionic liquid [emim][DCA] as solvent, Chemical Engineering Journal, 2013, 223, 287

    CrossRef

  12. 12
    Zuzana Labovská, Pavol Steltenpohl, Elena Graczová, Extractive distillation modeling of the ternary system 2-methoxy-2-methylpropane-methanol-butan-1-ol, Chemical Papers, 2012, 66, 6, 556

    CrossRef

  13. 13
    Keigo Matsuda, Koichi Iwakabe, Masaru Nakaiwa, Recent Advances in Internally Heat-Integrated Distillation Columns (HIDiC) for Sustainable Development, JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 2012, 45, 6, 363

    CrossRef

  14. 14
    D.F. Mendoza, S. Kjelstrup, Modeling a non-equilibrium distillation stage using irreversible thermodynamics, Chemical Engineering Science, 2011, 66, 12, 2713

    CrossRef

  15. 15
    N. Mac Dowell, A. Galindo, G. Jackson, C.S. Adjiman, 20th European Symposium on Computer Aided Process Engineering, 2010,

    CrossRef

  16. 16
    Zuzana Švandová, Juraj Labovský, Jozef Markoš, Ľudovít Jelemenský, Impact of mathematical model selection on prediction of steady state and dynamic behaviour of a reactive distillation column, Computers & Chemical Engineering, 2009, 33, 3, 788

    CrossRef

  17. 17
    Z. Švandová, J. Markoš, Ľ. Jelemenský, Impact of mass transfer coefficient correlations on prediction of reactive distillation column behaviour, Chemical Engineering Journal, 2008, 140, 1-3, 381

    CrossRef

  18. 18
    D. Noriler, H.F. Meier, A.A.C. Barros, M.R. Wolf Maciel, Thermal fluid dynamics analysis of gas–liquid flow on a distillation sieve tray, Chemical Engineering Journal, 2008, 136, 2-3, 133

    CrossRef

  19. 19
    Keigo Matsuda, Koichi Iwakabe, Kazuya Kubo, Akio Horiguchi, Yu Weifang, Hitoshi Kosuge, Sho Kataoka, Takuji Yamamoto, Takao Ohmori, Masaru Nakaiwa, Rate-based Modeling for Internally Heat-integrated Distillation Column (HIDiC) in Binary System, Journal of the Japan Petroleum Institute, 2007, 50, 3, 162

    CrossRef

  20. 20
    Erika Fabiola Abad-Zarate, Juan Gabriel Segovia-Hernández, Salvador Hernández, Agustín R. Uribe-Ramírez, A Short Note on Steady State Behaviour of a Petlyuk Distillation Column by Using a Non-Equilibrium Stage Model, The Canadian Journal of Chemical Engineering, 2006, 84, 3
  21. 21
    Z. Švandová, J. Markoš, L’. Jelemenský, Multiple steady states in a CSTR with total condenser: Comparison of equilibrium and nonequilibrium models, Chemical Papers, 2006, 60, 6, 432

    CrossRef

  22. 22
    Jianwei Li, Zhigang Lei, Zhongwei Ding, Chengyue Li, Biaohua Chen, Azeotropic Distillation: A Review of Mathematical Models, Separation & Purification Reviews, 2005, 34, 1, 87

    CrossRef

  23. 23
    V. A. Lotkhov, V. V. Dil?man, A. A. Lipatova, S. Ya. Kvashnin, N. N. Kulov, Profiles of the concentrations of components along the column height at different liquid holdup distributions in distillation of binary and ternary mixtures, Theoretical Foundations of Chemical Engineering, 2005, 39, 1, 1

    CrossRef

  24. 24
    V. A. Lotkhov, V. V. Dil?man, A. A. Lipatova, S. Ya. Kvashnin, N. N. Kulov, Profiles of the concentrations of components along the column height at different liquid holdup distributions in distillation of binary and ternary mixtures, Theoretical Foundations of Chemical Engineering, 2005, 39, 1, 1

    CrossRef

  25. 25
    Zhigang Lei, Biaohua Chen, Zhongwei Ding, Special Distillation Processes, 2005,

    CrossRef

  26. 26
    T. Ouni, K. Jakobsson, A. Pyhälathi, J. Aittamaa, Enhancing Productivity of Side Reactor Configuration Through Optimizing the Reaction Conditions, Chemical Engineering Research and Design, 2004, 82, 2, 167

    CrossRef

  27. 27
    J.A.Ojeda Nava, R. Krishna, Influence of unequal component efficiencies on trajectories during distillation of a homogeneous azeotropic mixture, Chemical Engineering and Processing: Process Intensification, 2004, 43, 3, 305

    CrossRef

  28. 28
    K. Jakobsson, A. Hasanen, J. Aittamaa, Modelling of a Countercurrent Hydrogenation Process, Chemical Engineering Research and Design, 2004, 82, 2, 203

    CrossRef

  29. 29
    Hamid Reza Mortaheb, Hitoshi Kosuge, Simulation and optimization of heterogeneous azeotropic distillation process with a rate-based model, Chemical Engineering and Processing: Process Intensification, 2004, 43, 3, 317

    CrossRef

  30. 30
    P.A.M. Springer, R. Baur, R. Krishna, Composition Trajectories for Heterogeneous Azeotropic Distillation in a Bubble-Cap Tray Column, Chemical Engineering Research and Design, 2003, 81, 4, 413

    CrossRef

  31. 31
    P. Moritz, S. Blagov, H. Hasse, Heterogen katalysierte Reaktivdestillation: Design und Scale-up am Beispiel von Methylacetat, Chemie Ingenieur Technik, 2002, 74, 9
  32. 32
    NOBUAKI EGOSHI, HIROSHI KAWAKAMI, KOICHI ASANO, Heat and Mass Transfer Model Approach to Prediction of Separation Performance of Cryogenic Air Separation Plant by Packed Columns with Structured Packing., JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 2001, 34, 1, 22

    CrossRef

  33. 33
    M.R. Wolf-Maciel, C. Soares, A.A.C. Barros, European Symposium on Computer Aided Process Engineering - 11, 34th European Symposium of the Working Party on Computer Aided Process Engineering, 2001,

    CrossRef

  34. 34
    Shenbo Yu, Aiyue Zhou, Qiu Tan, Simulation of multistage catalytic stripping with A nonequilibrium stage model, Computers & Chemical Engineering, 1997, 21, 4, 409

    CrossRef

  35. 35
    M.H. Pescarini, A.A.C. Barros, M.R. Wolf-Maciel, Development of a software for simulating separation processes using a nonequilibrium stage model, Computers & Chemical Engineering, 1996, 20, S279

    CrossRef

  36. 36
    Hideki Mori, Akiyoshi Oda, Tsutomu Aragaki, Yasuhiro Kunimoto, Packed column distillation simulation with a rate-based method., JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 1996, 29, 2, 307

    CrossRef

  37. 37
    Sea Cheon Oh, Young Se Oh, Yeong-Koo Yeo, Modeling and simulation of a nitric acid recovery process, Korean Journal of Chemical Engineering, 1995, 12, 3, 366

    CrossRef

  38. 38
    Hendrik A. Kooijman, Ross Taylor, Modelling mass transfer in multicomponent distillation, The Chemical Engineering Journal and the Biochemical Engineering Journal, 1995, 57, 2, 177

    CrossRef

  39. 39
    R. Taylor, H.A. Kooijman, J.-S. Hung, A second generation nonequilibrium model for computer simulation of multicomponent separation processes, Computers & Chemical Engineering, 1994, 18, 3, 205

    CrossRef

  40. 40
    James R. Bosley, Thomas F. Edgar, An efficient dynamic model for batch distillation, Journal of Process Control, 1994, 4, 4, 195

    CrossRef

  41. 41
    Gabriel Ovejero, Rafael Van Grieken, Lourdes Rodriguez, Jose Luis Valverde, Simulation of Multicomponent Distillation Using a Nonequilibrium Stage Model, Separation Science and Technology, 1994, 29, 14, 1805

    CrossRef

  42. 42
    FU YANG WANG, IAN T. CAMERON, DYNAMICS OF FRACTIONATORS WITH STRUCTURED PACKING, Chemical Engineering Communications, 1993, 119, 1, 231

    CrossRef

  43. 43
    Antonio De Lucas, Gabriel Ovejero, Antonio Sánchez, Removal of Acetic Acid by Absorption from Stream Recycle Ethylene in the Ethylene and Vinyl Acetate Copolymers Process, Separation Science and Technology, 1992, 27, 10, 1197

    CrossRef

  44. 44
    M.G. Grottoli, G. Biardi, L. Pellegrini, A new simulation model for a real trays absorption column, Computers & Chemical Engineering, 1991, 15, 3, 171

    CrossRef

  45. 45
    J.L Peytavy, M.H Huor, R Bugarel, A Laurent, Interfacial area and gas-side mass transfer coefficient of a gas—liquid absorption column: pilot-scale comparison of various tray types, Chemical Engineering and Processing: Process Intensification, 1990, 27, 3, 155

    CrossRef

  46. 46
    M.F. Powers, D.J. Vickeryt, A. Arehole, R. Taylor, A nonequilibrium stage model of multicomponent separation processes—V. Computational methods for solving the model equations, Computers & Chemical Engineering, 1988, 12, 12, 1229

    CrossRef

  47. 47
    RAJAMANI KRISHNA, SEPARATION-IRREVERSIBLE THERMO A UNIFIED THEORY OF SEPARATION PROCESSES BASED ON, Chemical Engineering Communications, 1987, 59, 1-6, 33

    CrossRef

  48. 48
    DOUGLAS D. FREY, PREDICTION OF LIQUID-PHASE MASS-TRANSFER COEFFICIENTS IN MULTICOMPONENT ION EXCHANGE: COMPARISON OF MATRIX, FILM-MODEL, AND EFFECTIVE-DIFFUSIVITY METHODS, Chemical Engineering Communications, 1986, 47, 4-6, 273

    CrossRef

  49. 49
    Appendix,