SEARCH

SEARCH BY CITATION

Cited in:

CrossRef

This article has been cited by:

  1. 1
    C. Rodrigues de Azevedo, J. Peres, M. von Stosch, An efficient method for the numerical integration of measured variable dependent ordinary differential equations, Engineering Applications of Artificial Intelligence, 2015, 38, 24

    CrossRef

  2. 2
    Sangho Lee, Jaehum Jung, Chansaem Park, Ung Lee, Chonghun Han, Automatic Model-Based Soft Sensor Generation for Liquefied Natural Gas Terminal Pipeline, Industrial & Engineering Chemistry Research, 2014, 53, 39, 15041

    CrossRef

  3. 3
    Sebastian Schaepe, Donatas Levisauskas, Rimvydas Simutis, Andreas Lübbert, Data-based optimization of protein production processes, Biotechnology Letters, 2014, 36, 5, 929

    CrossRef

  4. 4
    Shichao Xu, Arief Adhitya, Rajagopalan Srinivasan, Hybrid Model-Based Framework for Alarm Anticipation, Industrial & Engineering Chemistry Research, 2014, 53, 13, 5182

    CrossRef

  5. 5
    Moritz von Stosch, Steven Davy, Kjell Francois, Vytautas Galvanauskas, Jan-Martijn Hamelink, Andreas Luebbert, Martin Mayer, Rui Oliveira, Ronan O'Kennedy, Paul Rice, Jarka Glassey, Hybrid modeling for quality by design and PAT-benefits and challenges of applications in biopharmaceutical industry, Biotechnology Journal, 2014, 9, 6
  6. 6
    Moritz von Stosch, Rui Oliveira, Joana Peres, Sebastião Feyo de Azevedo, Hybrid semi-parametric modeling in process systems engineering: Past, present and future, Computers & Chemical Engineering, 2014, 60, 86

    CrossRef

  7. 7
    Brage Rugstad Knudsen, Ignacio E. Grossmann, Bjarne Foss, Andrew R. Conn, Lagrangian relaxation based decomposition for well scheduling in shale-gas systems, Computers & Chemical Engineering, 2014, 63, 234

    CrossRef

  8. 8
    Marjan Alavi, Hooshang Jazayeri-Rad, Reza Mosayebi Behbahani, OPTIMIZING THE FEED CONDITIONS IN A DIMETHYL ETHER PRODUCTION PROCESS TO MAXIMIZE METHANOL CONVERSION USING A HYBRID FIRST PRINCIPLE NEURAL NETWORK APPROACH, Chemical Engineering Communications, 2014, 201, 5, 650

    CrossRef

  9. 9
    Hamid Taghavifar, Aref Mardani, Use of artificial neural networks for estimation of agricultural wheel traction force in soil bin, Neural Computing and Applications, 2014, 24, 6, 1249

    CrossRef

  10. 10
    H. Vale, A. Daiss, O. Naeem, L. Šeda, K. Becker, K.-D. Hungenberg, Models in the Polymer Industry: What Present? What Future?, Macromolecular Symposia, 2013, 333, 1
  11. 11
    Dapeng Niu, Mingxing Jia, Fuli Wang, Dakuo He, Optimization of Nosiheptide Fed-Batch Fermentation Process Based on Hybrid Model, Industrial & Engineering Chemistry Research, 2013, 52, 9, 3373

    CrossRef

  12. 12
    Moritz von Stosch, Rui Oliveira, Joana Peres, Sebastião Feyo de Azevedo, A general hybrid semi-parametric process control framework, Journal of Process Control, 2012, 22, 7, 1171

    CrossRef

  13. 13
    K. Piotrowski, N. Hutnik, A. Matynia, Effect of Sulphate(VI) Ions on CSD of Struvite–Neural Network Model of Continuous Reaction Crystallization Process in a DT MSMPR Crystallizer, Procedia Engineering, 2012, 42, 521

    CrossRef

  14. 14
    M. von Stosch, R. Oliveria, J. Peres, S. Feyo de Azevedo, Hybrid modeling framework for process analytical technology: Application to Bordetella pertussis cultures, Biotechnology Progress, 2012, 28, 1
  15. 15
    Ana R. Ricardo, Rui Oliveira, Svetlozar Velizarov, Maria A.M. Reis, João G. Crespo, Hybrid modeling of counterion mass transfer in a membrane-supported biofilm reactor, Biochemical Engineering Journal, 2012, 62, 22

    CrossRef

  16. 16
    M. von Stosch, R. Oliveira, J. Peres, S. Feyo de Azevedo, A novel identification method for hybrid (N)PLS dynamical systems with application to bioprocesses, Expert Systems with Applications, 2011, 38, 9, 10862

    CrossRef

  17. 17
    Dwaipayan Sen, Anirban Roy, Apratim Bhattacharya, Debadrito Banerjee, Chiranjib Bhattacharjee, Development of a knowledge based hybrid neural network (KBHNN) for studying the effect of diafiltration during ultrafiltration of whey, Desalination, 2011, 273, 1, 168

    CrossRef

  18. 18
    J. Wang, L. Lin Cao, H. Yan Wu, X. Guang Li, Q. Bing Jin, Dynamic Modeling and Optimal Control of Batch Reactors, Based on Structure Approaching Hybrid Neural Networks, Industrial & Engineering Chemistry Research, 2011, 50, 10, 6174

    CrossRef

  19. 19
    Aidong Yang, Elaine Martin, Julian Morris, Identification of semi-parametric hybrid process models, Computers & Chemical Engineering, 2011, 35, 1, 63

    CrossRef

  20. 20
    Francisco A. Cubillos, Eduardo Vyhmeister, Gonzalo Acuña, Pedro I. Alvarez, Rotary Dryer Control Using a Grey-Box Neural Model Scheme, Drying Technology, 2011, 29, 15, 1820

    CrossRef

  21. 21
    José Santos, Rui Oliveira, João Crespo, Nanoporous Materials for Energy and the Environment, 2011,

    CrossRef

  22. 22
    Marcio A. Mazutti, Marcos L. Corazza, Francisco Maugeri, Maria I. Rodrigues, J. Vladimir Oliveira, Helen Treichel, Fernanda C. Corazza, Hybrid modeling of inulinase bio-production process, Journal of Chemical Technology and Biotechnology, 2010, 85, 4
  23. 23
    Xianfang Wang, Jindong Chen, Chunbo Liu, Feng Pan, Hybrid modeling of penicillin fermentation process based on least square support vector machine, Chemical Engineering Research and Design, 2010, 88, 4, 415

    CrossRef

  24. 24
    M. von Stosch, R. Oliveira, J. Peres, S. Feyo de Azevedo, 20th European Symposium on Computer Aided Process Engineering, 2010,

    CrossRef

  25. 25
    Tamas Varga, Ferenc Szeifert, Janos Abonyi, Decision tree and first-principles model-based approach for reactor runaway analysis and forecasting, Engineering Applications of Artificial Intelligence, 2009, 22, 4-5, 569

    CrossRef

  26. 26
    L L Cao, X G Li, P Jiang, J Wang, Intelligent modelling of a batch reactor with partially unmeasurable states based upon a structure approaching hybrid neural networks, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2009, 223, 2, 161

    CrossRef

  27. 27
    Junde Lu, Ke Yao, Furong Gao, Process similarity and developing new process models through migration, AIChE Journal, 2009, 55, 9
  28. 28
    Han-Bing Qu, Bao-Gang Hu, Variational learning for Generalized Associative Functional Networks in modeling dynamic process of plant growth, Ecological Informatics, 2009, 4, 3, 163

    CrossRef

  29. 29
    Reinout Romijn, Leyla Özkan, Siep Weiland, Jobert Ludlage, Wolfgang Marquardt, A grey-box modeling approach for the reduction of nonlinear systems, Journal of Process Control, 2008, 18, 9, 906

    CrossRef

  30. 30
    Wouter M. Geerdes, Miguel Ángel Torres Alvarado, Mauricio Cabrera-Ríos, Alberto Cavazos, An Application of Physics-Based and Artificial Neural Networks-Based Hybrid Temperature Prediction Schemes in a Hot Strip Mill, Journal of Manufacturing Science and Engineering, 2008, 130, 1, 014501

    CrossRef

  31. 31
    Rosineide G Silva, Laura M Pinotti, Antonio J G Cruz, Raquel L C Giordano, Roberto C Giordano, Artificial neural networks to infer biomass and product concentration during the production of penicillin G acylase from Bacillus megaterium, Journal of Chemical Technology and Biotechnology, 2008, 83, 5
  32. 32
    J. Peres, R. Oliveira, S. Feyo de Azevedo, Bioprocess hybrid parametric/nonparametric modelling based on the concept of mixture of experts, Biochemical Engineering Journal, 2008, 39, 1, 190

    CrossRef

  33. 33
    Stefan Gnoth, Marco Jenzsch, Rimvydas Simutis, Andreas Lübbert, Control of cultivation processes for recombinant protein production: a review, Bioprocess and Biosystems Engineering, 2008, 31, 1, 21

    CrossRef

  34. 34
    Pedro V. Lima, Pedro M. Saraiva, A semi-mechanistic model building framework based on selective and localized model extensions, Computers & Chemical Engineering, 2007, 31, 4, 361

    CrossRef

  35. 35
    J.L.C. Santos, A.M. Hidalgo, R. Oliveira, S. Velizarov, J.G. Crespo, Analysis of solvent flux through nanofiltration membranes by mechanistic, chemometric and hybrid modelling, Journal of Membrane Science, 2007, 300, 1-2, 191

    CrossRef

  36. 36
    Siris Ö. Laursen, Daniel Webb, W. Fred Ramirez, Dynamic hybrid neural network model of an industrial fed-batch fermentation process to produce foreign protein, Computers & Chemical Engineering, 2007, 31, 3, 163

    CrossRef

  37. 37
    Jyh-Shyong Chang, Shih-Chieh Lu, Yu-Lun Chiu, Dynamic modeling of batch polymerization reactors via the hybrid neural-network rate-function approach, Chemical Engineering Journal, 2007, 130, 1, 19

    CrossRef

  38. 38
    M. R. Malayeri, H. Müller-Steinhagen, Initiation of CASO4Scale Formation on Heat Transfer Surfaces under Pool Boiling Conditions, Heat Transfer Engineering, 2007, 28, 3, 240

    CrossRef

  39. 39
    Yongfeng FU, Hongye SU, Jian CHU, MIMO Soft-sensor Model of Nutrient Content for Compound Fertilizer Based on Hybrid Modeling Technique, Chinese Journal of Chemical Engineering, 2007, 15, 4, 554

    CrossRef

  40. 40
    Pepijn W.J. van de Ven, Tor A. Johansen, Asgeir J. Sørensen, Colin Flanagan, Daniel Toal, Neural network augmented identification of underwater vehicle models, Control Engineering Practice, 2007, 15, 6, 715

    CrossRef

  41. 41
    Pratap R. Patnaik, Quantitative measures of disorder in biological oscillations and their implications for bioreactor operation, Asia-Pacific Journal of Chemical Engineering, 2007, 2, 6
  42. 42
    O. Kahrs, W. Marquardt, The validity domain of hybrid models and its application in process optimization, Chemical Engineering and Processing: Process Intensification, 2007, 46, 11, 1054

    CrossRef

  43. 43
    Matthew C. Coleman, David E. Block, Bayesian parameter estimation with informative priors for nonlinear systems, AIChE Journal, 2006, 52, 2
  44. 44
    Stavros Papadokonstantakis, Argyrios Lygeros, Sven P. Jacobsson, Comparison of recent methods for inference of variable influence in neural networks, Neural Networks, 2006, 19, 4, 500

    CrossRef

  45. 45
    Jyh-Shyong Chang, Jinn-Tsair Lee, Audrey-Chingzu Chang, Neural-network rate-function modeling of submerged cultivation of Monascus anka, Biochemical Engineering Journal, 2006, 32, 2, 119

    CrossRef

  46. 46
    Fabiano A.N. Fernandes, Sueli Rodrigues, Optimization of panose production by enzymatic synthesis using neural networks, Process Biochemistry, 2006, 41, 5, 1090

    CrossRef

  47. 47
    Matthew C. Coleman, David E. Block, Retrospective optimization of time-dependent fermentation control strategies using time-independent historical data, Biotechnology and Bioengineering, 2006, 95, 3
  48. 48
    Athakorn Kengpol, Worrapon Wangananon, The expert system for assessing customer satisfaction on fragrance notes: Using artificial neural networks, Computers & Industrial Engineering, 2006, 51, 4, 567

    CrossRef

  49. 49
    J. Peres, F. Freitas, MAM Reis, S. Feyo de Azevedo, R. Oliveira, 16th European Symposium on Computer Aided Process Engineering and 9th International Symposium on Process Systems Engineering, 2006,

    CrossRef

  50. 50
    Janos Madar, Janos Abonyi, Ferenc Szeifert, Feedback linearizing control using hybrid neural networks identified by sensitivity approach, Engineering Applications of Artificial Intelligence, 2005, 18, 3, 343

    CrossRef

  51. 51
    G. Zahedi, A. Elkamel, A. Lohi, A. Jahanmiri, M.R. Rahimpor, Hybrid artificial neural network—First principle model formulation for the unsteady state simulation and analysis of a packed bed reactor for CO2 hydrogenation to methanol, Chemical Engineering Journal, 2005, 115, 1-2, 113

    CrossRef

  52. 52
    B. Sohlberg, Hybrid grey box modelling of a pickling process, Control Engineering Practice, 2005, 13, 9, 1093

    CrossRef

  53. 53
    Mohammed Al-Yemni, Ray Y. K. Yang, Hybrid neural-networks modeling of an enzymatic membrane reactor, Journal of the Chinese Institute of Engineers, 2005, 28, 7, 1061

    CrossRef

  54. 54
    Abhijit Kulkarni, V.K. Jayaraman, B.D. Kulkarni, Knowledge incorporated support vector machines to detect faults in Tennessee Eastman Process, Computers & Chemical Engineering, 2005, 29, 10, 2128

    CrossRef

  55. 55
    Aurora Garea, Jose Angel Marques, Angel Irabien, Mechanistical and non-linear modelling approaches to in-duct desulfurization, Chemical Engineering and Processing: Process Intensification, 2005, 44, 7, 709

    CrossRef

  56. 56
    A. Teixeira, A.E. Cunha, J.J. Clemente, J.L. Moreira, H.J. Cruz, P.M. Alves, M.J.T. Carrondo, R. Oliveira, Modelling and optimization of a recombinant BHK-21 cultivation process using hybrid grey-box systems, Journal of Biotechnology, 2005, 118, 3, 290

    CrossRef

  57. 57
    Tomasz Wiltowski, Krzysztof Piotrowski, Hana Lorethova, Lubor Stonawski, Kanchan Mondal, S.B. Lalvani, Neural network approximation of iron oxide reduction process, Chemical Engineering and Processing: Process Intensification, 2005, 44, 7, 775

    CrossRef

  58. 58
    Amith D. Naik, Sunil S. Bhagwat, Optimization of an Artificial Neural Network for Modeling Protein Solubility, Journal of Chemical & Engineering Data, 2005, 50, 2, 460

    CrossRef

  59. 59
    Dae Sung Lee, Peter A. Vanrolleghem, Jong Moon Park, Parallel hybrid modeling methods for a full-scale cokes wastewater treatment plant, Journal of Biotechnology, 2005, 115, 3, 317

    CrossRef

  60. 60
    F. Mjalli, S. Al-Asheh, F. Banat, N. Al-Lagtah, Representation of Adsorption Data for the Isopropanol-Water System using Neural Network Techniques, Chemical Engineering & Technology, 2005, 28, 12
  61. 61
    G. Schopfer, O. Kahrs, W. Marquardt, M. Warncke, T. Mrziglod, A. Schuppert, European Symposium on Computer-Aided Process Engineering-15, 38th European Symposium of the Working Party on Computer Aided Process Engineering, 2005,

    CrossRef

  62. 62
    Mohd Azlan Hussain, Pei Yee Ho, Adaptive sliding mode control with neural network based hybrid models, Journal of Process Control, 2004, 14, 2, 157

    CrossRef

  63. 63
    A. Vande Wouwer, C. Renotte, Ph. Bogaerts, Biological reaction modeling using radial basis function networks, Computers & Chemical Engineering, 2004, 28, 11, 2157

    CrossRef

  64. 64
    R. Oliveira, Combining first principles modelling and artificial neural networks: a general framework, Computers & Chemical Engineering, 2004, 28, 5, 755

    CrossRef

  65. 65
    Raphael Linker, Ido Seginer, Greenhouse temperature modeling: a comparison between sigmoid neural networks and hybrid models, Mathematics and Computers in Simulation, 2004, 65, 1-2, 19

    CrossRef

  66. 66
    C.W. Ng, M.A. Hussain, Hybrid neural network—prior knowledge model in temperature control of a semi-batch polymerization process, Chemical Engineering and Processing: Process Intensification, 2004, 43, 4, 559

    CrossRef

  67. 67
    Srečko Milanič, Stanko Strmčnik, Davorka Šel, Nadja Hvala, Rihard Karba, Incorporating prior knowledge into artificial neural networks—an industrial case study, Neurocomputing, 2004, 62, 131

    CrossRef

  68. 68
    M.F Abbod, J Talamantes-Silva, D.A Linkens, I Howard, Modelling of plane strain compression (PSC) test for aluminium alloys using finite elements and fuzzy logic, Engineering Applications of Artificial Intelligence, 2004, 17, 5, 447

    CrossRef

  69. 69
    Pratap R. Patnaik, Neural and Hybrid Neural Modeling and Control of Fed-Batch Fermentation for Streptokinase: Comparative Evaluation under Nonideal Conditions, The Canadian Journal of Chemical Engineering, 2004, 82, 3
  70. 70
    Matthew C. Coleman, Kristan K. S. Buck, David E. Block, An integrated approach to optimization of Escherichia coli fermentations using historical data, Biotechnology and Bioengineering, 2003, 84, 3
  71. 71
    P.R Patnaik, An integrated hybrid neural system for noise filtering, simulation and control of a fed-batch recombinant fermentation, Biochemical Engineering Journal, 2003, 15, 3, 165

    CrossRef

  72. 72
    S.Gh. Etemad, J. Thibault, S.H. Hashemabadi, Calculation of the Pitot tube correction factor for Newtonian and non-Newtonian fluids, ISA Transactions, 2003, 42, 4, 505

    CrossRef

  73. 73
    Ali Bazaei, Vahid Johari Majd, Feedback linearization of discrete-time nonlinear uncertain plants via first-principles-based serial neuro-gray-box models, Journal of Process Control, 2003, 13, 8, 819

    CrossRef

  74. 74
    K Piotrowski, J Piotrowski, J Schlesinger, Modelling of complex liquid–vapour equilibria in the urea synthesis process with the use of artificial neural network, Chemical Engineering and Processing: Process Intensification, 2003, 42, 4, 285

    CrossRef

  75. 75
    G.M Bollas, S Papadokonstadakis, J Michalopoulos, G Arampatzis, A.A Lappas, I.A Vasalos, A Lygeros, Using hybrid neural networks in scaling up an FCC model from a pilot plant to an industrial unit, Chemical Engineering and Processing: Process Intensification, 2003, 42, 8-9, 697

    CrossRef

  76. 76
    F.A. Cubillos, E.L. Lima, European Symposium on Computer Aided Process Engineering-13, 36th European Symposium of the Working Party on Computer Aided Process Engineering, 2003,

    CrossRef

  77. 77
    Pascal F. van Lith, Ben H.L. Betlem, Brian Roffel, A structured modeling approach for dynamic hybrid fuzzy-first principles models, Journal of Process Control, 2002, 12, 5, 605

    CrossRef

  78. 78
    Chong-wei Chen, De-zhao Chen, Guang-zhi Cao, An improved differential evolution algorithm in training and encoding prior knowledge into feedforward networks with application in chemistry, Chemometrics and Intelligent Laboratory Systems, 2002, 64, 1, 27

    CrossRef

  79. 79
    Yin Wang, Gang Rong, Shuqing Wang, Hybrid fuzzy modeling of chemical processes, Fuzzy Sets and Systems, 2002, 130, 2, 265

    CrossRef

  80. 80
    Dae Sung Lee, Che Ok Jeon, Jong Moon Park, Kun Soo Chang, Hybrid neural network modeling of a full-scale industrial wastewater treatment process, Biotechnology and Bioengineering, 2002, 78, 6
  81. 81
    H.J. Ramaker, E.N.M. van Sprang, S.P. Gurden, J.A. Westerhuis, A.K. Smilde, Improved monitoring of batch processes by incorporating external information, Journal of Process Control, 2002, 12, 4, 569

    CrossRef

  82. 82
    Karlene A. Hoo, Eric D. Sinzinger, Michael J. Piovoso, Improvements in the predictive capability of neural networks, Journal of Process Control, 2002, 12, 1, 193

    CrossRef

  83. 83
    Thomas Mc Avoy, Intelligent “control” applications in the process industries, Annual Reviews in Control, 2002, 26, 1, 75

    CrossRef

  84. 84
    K. Palmer, M. Realff, Metamodeling Approach to Optimization of Steady-State Flowsheet Simulations, Chemical Engineering Research and Design, 2002, 80, 7, 760

    CrossRef

  85. 85
    Pratap R. Patnaik, Neural Optimization of Fed-batch Streptokinase Fermentation in a Non-ideal Bioreactor, The Canadian Journal of Chemical Engineering, 2002, 80, 5
  86. 86
    Yuan Tian, Jie Zhang, Julian Morris, Optimal control of a fed-batch bioreactor based upon an augmented recurrent neural network model, Neurocomputing, 2002, 48, 1-4, 919

    CrossRef

  87. 87
    M.A. Hussain, M. Shafiur Rahman, C.W. Ng, Prediction of pores formation (porosity) in foods during drying: generic models by the use of hybrid neural network, Journal of Food Engineering, 2002, 51, 3, 239

    CrossRef

  88. 88
    P.R. Patnaik, A simulation study of dynamic neural filtering and control of a fed-batch bioreactor under nonideal conditions, Chemical Engineering Journal, 2001, 84, 3, 533

    CrossRef

  89. 89
    Timothy D. Knapp, Hector M. Budman, Gordon Broderick, Adaptive control of a CSTR with a neural network model, Journal of Process Control, 2001, 11, 1, 53

    CrossRef

  90. 90
    R.B. Vilim, H.E. Garcia, F.W. Chen, An identification scheme combining first principle knowledge, neural networks, and the likelihood function, IEEE Transactions on Control Systems Technology, 2001, 9, 1, 186

    CrossRef

  91. 91
    P.R. Patnaik, Further enhancement of fed-batch streptokinase yield in the presence of inflow noise by coupled neural networks, Process Biochemistry, 2001, 37, 2, 145

    CrossRef

  92. 92
    Chong-wei Chen, De-zhao Chen, Prior-knowledge-based feedforward network simulation of true boiling point curve of crude oil, Computers & Chemistry, 2001, 25, 6, 541

    CrossRef

  93. 93
    Pedro Vale Lima, Pedro M. Saraiva, European Symposium on Computer Aided Process Engineering - 11, 34th European Symposium of the Working Party on Computer Aided Process Engineering, 2001,

    CrossRef

  94. 94
    Ireneusz ZBICIŃSKI, Krzysztof CIESIELSKI, EXTENSION OF THE NEURAL NETWORKS OPERATING RANGE BY THE APPLICATION OF DIMENSIONLESS NUMBERS IN PREDICTION OF HEAT TRANSFER COEFFICIENTS, Drying Technology, 2000, 18, 3, 649

    CrossRef

  95. 95
    Hwi Jin Kim, Kun Soo Chang, Hybrid neural network approach in description and prediction of dynamic behavior of chaotic chemical reaction systems, Korean Journal of Chemical Engineering, 2000, 17, 6, 696

    CrossRef

  96. 96
    L.F.M. Zorzetto, R.Maciel Filho, M.R. Wolf-Maciel, Processing modelling development through artificial neural networks and hybrid models, Computers & Chemical Engineering, 2000, 24, 2-7, 1355

    CrossRef

  97. 97
    Abdulrza Abilov, Zehra Zeybek, Use of neural network for modeling of non-linear process integration technology in chemical engineering, Chemical Engineering and Processing: Process Intensification, 2000, 39, 5, 449

    CrossRef

  98. 98
    H. J. L. van Can, H. A. B. te Braake, A. Bijman, C. Hellinga, K. Ch. A. M. Luyben, J. J. Heijnen, An efficient model development strategy for bioprocesses based on neural networks in macroscopic balances: Part II, Biotechnology and Bioengineering, 1999, 62, 6
  99. 99
    Gonzalo Acuña, Francisco Cubillos, Jules Thibault, Eric Latrille, Comparison of methods for training grey-box neural network models, Computers & Chemical Engineering, 1999, 23, S561

    CrossRef

  100. 100
    Primož Potočnik, Igor Grabec, Empirical modeling of antibiotic fermentation process using neural networks and genetic algorithms, Mathematics and Computers in Simulation, 1999, 49, 4-5, 363

    CrossRef

  101. 101
    R. Babuška, H.B. Verbruggen, H.J.L. van Can, Fuzzy modeling of enzymatic penicillin-G conversion, Engineering Applications of Artificial Intelligence, 1999, 12, 1, 79

    CrossRef

  102. 102
    A. Hugget, P. Sébastian, J.-P. Nadeau, Global optimization of a dryer by using neural networks and genetic algorithms, AIChE Journal, 1999, 45, 6
  103. 103
    János Abonyi, Tibor Chován, Lajos Nagy, Ferenc Szeifert, Hybrid convolution model and its application in predictive pH control, Computers & Chemical Engineering, 1999, 23, S227

    CrossRef

  104. 104
    Sanjay Gupta, Pi-Hsin Liu, Spyros A. Svoronos, Rajesh Sharma, N. A. Abdel-Khalek, Yahui Cheng, Hassan El-Shall, Hybrid first-principles/neural networks model for column flotation, AIChE Journal, 1999, 45, 3
  105. 105
    I. H. J. Ploemen, M. J. G. van de Molengraft, Hybrid Modeling for Mechanical Systems: Methodologies and Applications, Journal of Dynamic Systems, Measurement, and Control, 1999, 121, 2, 270

    CrossRef

  106. 106
    J. M. MATEO, F. A. CUBILLOS, P. I ALVAREZ, HYBRID NEURAL APPROACHES FOR MODELLING DRYING PROCESSES FOR PARTICULATE SOLIDS, Drying Technology, 1999, 17, 4-5, 809

    CrossRef

  107. 107
    Gokaraju K. Raju, Charles L. Cooney, Active learning from process data, AIChE Journal, 1998, 44, 10
  108. 108
    Francisco A. Cubillos, Enrique L. Lima, Adaptive hybrid neural models for process control, Computers & Chemical Engineering, 1998, 22, S989

    CrossRef

  109. 109
    Tor A. Johansen, Constrained and regularized system identification, Modeling, Identification and Control: A Norwegian Research Bulletin, 1998, 19, 2, 109

    CrossRef

  110. 110
    Hubert A.B. te Braake, Eric J.L. van Can, Jacquelien M.A. Scherpen, Henk B. Verbruggen, Control of nonlinear chemical processes using neural models and feedback linearization, Computers & Chemical Engineering, 1998, 22, 7-8, 1113

    CrossRef

  111. 111
    H.A.B.te Braake, H.J.L. van Can, H.B. Verbruggen, Semi-mechanistic modeling of chemical processes with neural networks, Engineering Applications of Artificial Intelligence, 1998, 11, 4, 507

    CrossRef

  112. 112
    Henricus J. L. Van Can, Hubert A. B. Te Braake, Sander Dubbelman, Chris Hellinga, Karel Ch. A. M. Luyben, Joseph J. Heijnen, Understanding and applying the extrapolation properties of serial gray-box models, AIChE Journal, 1998, 44, 5
  113. 113
    H. J. L. van Can, H. A. B. te Braake, C. Hellinga, K. C. A. M. Luyben, An efficient model development strategy for bioprocesses based on neural networks in macroscopic balances, Biotechnology and Bioengineering, 1997, 54, 6
  114. 114
    Srecˇko Milanicˇ, Davorka Sˇel, Nadja Hvala, Stanko Strmcˇnik, Rihard Karba, Applying artificial neural network models to control a time variant chemical plant, Computers & Chemical Engineering, 1997, 21, S637

    CrossRef

  115. 115
    MUKUL AGARWAL, Combining neural and conventional paradigms for modelling,prediction and control, International Journal of Systems Science, 1997, 28, 1, 65

    CrossRef

  116. 116
    Kyung Joo Mo, Young Seok Oh, En Sup Yoon, Chang Wook Jeong, Development of operation-aided system for chemical processes, Expert Systems with Applications, 1997, 12, 4, 455

    CrossRef

  117. 117
    I. Zbiciński, W. Kamiński, K. Ciesielski, P. Strumił ł, DYNAMIC AND HYBRID NEURAL MODEL OF THERMAL DRYING IN A FLUTDIZED BED, Drying Technology, 1997, 15, 6-8, 1743

    CrossRef

  118. 118
    BENEDICT SCHENKER, MUKUL AGARWAL, Dynamic modelling using neural networks, International Journal of Systems Science, 1997, 28, 12, 1285

    CrossRef

  119. 119
    R Simutis, R Oliveira, M Manikowski, S.Feyo de Azevedo, A Lübbert, How to increase the performance of models for process optimization and control, Journal of Biotechnology, 1997, 59, 1-2, 73

    CrossRef

  120. 120
    F.A. Cubillos, E.L. Lima, Identification and optimizing control of a rougher flotation circuit using an adaptable hybrid-neural model, Minerals Engineering, 1997, 10, 7, 707

    CrossRef

  121. 121
    Hong Zhao, Oliver J. Hao, Thomas J. McAvoy, Chao-Hsi Chang, Modeling Nutrient Dynamics in Sequencing Batch Reactor, Journal of Environmental Engineering, 1997, 123, 4, 311

    CrossRef

  122. 122
    J. Conlin, C. Peel, G.A. Montague, Modelling pressure drop in water treatment, Artificial Intelligence in Engineering, 1997, 11, 4, 393

    CrossRef

  123. 123
    Hiroshi Shimizu, Kouichi Yasuoka, Keiji Uchiyama, Suteaki Shioya, On-line fault diagnosis for optimal rice α-amylase production process of a temperature-sensitive mutant of Saccharomyces cerevisiae by an autoassociative neural network, Journal of Fermentation and Bioengineering, 1997, 83, 5, 435

    CrossRef

  124. 124
    Tor A. Johansen, Bjarne A. Foss, Operating regime based process modeling and identification, Computers & Chemical Engineering, 1997, 21, 2, 159

    CrossRef

  125. 125
    Hiranmayee Vedam, Venkat Venkatasubramanian, Signed digraph based multiple fault diagnosis, Computers & Chemical Engineering, 1997, 21, S655

    CrossRef

  126. 126
    H.A.B. Te Braake, H.J.L. Van Can, G. Van Straten, H.B. Verbruggen, Two-step approach in the training of regulated activation weight neural networks (RAWN), Engineering Applications of Artificial Intelligence, 1997, 10, 2, 157

    CrossRef

  127. 127
    H.Ted Su, Tariq Samad, Neural Systems for Control, 1997,

    CrossRef

  128. 128
    E.J. Molga, K.R. Westerterp, Dynamics of Surfaces and Reaction Kinetics in Heterogeneous Catalysis, Proceedings of the International Symposium, 1997,

    CrossRef

  129. 129
    David J. Nicholson, Douglas B. Kell, Christopher L. Davey, Deconvolution of the dielectric spectra of microbial cell suspensions using multivariate calibration and artificial neural networks, Bioelectrochemistry and Bioenergetics, 1996, 39, 2, 185

    CrossRef

  130. 130
    I. Zbiciński, P. Strumiłło, W. Kamiński, Hybrid neural model of thermal drying in a fluidized bed, Computers & Chemical Engineering, 1996, 20, S695

    CrossRef

  131. 131
    Francisco A. Cubillos, Pedro I. Alvarez, Jose C. Pinto, Enrique L. Lima, Hybrid-neural modeling for particulate solid drying processes, Powder Technology, 1996, 87, 2, 153

    CrossRef

  132. 132
    Tor A. Johansen, Identification of non-linear systems using empirical data and prior knowledge—an optimization approach, Automatica, 1996, 32, 3, 337

    CrossRef

  133. 133
    Ali Çinar, Nonlinear time series models for multivariable dynamic processes, Chemometrics and Intelligent Laboratory Systems, 1995, 30, 1, 147

    CrossRef

  134. 134
    Benedikt Schenker, Mukul Agarwal, Prediction of infrequently measurable quantities in poorly modelled processes, Journal of Process Control, 1995, 5, 5, 329

    CrossRef

  135. 135
    D.R. Baughman, Y.A. Liu, Neural Networks in Bioprocessing and Chemical Engineering, 1995,

    CrossRef