Newtonian drop impact with a solid surface

Authors


Abstract

The spreading of Newtonian liquid drops after impact with a solid surface is reproted for a range of liquid and surface proeprties, drop diameters, and impact velocities. Results for liquid viscosities up to 300 mPa.s are given. For a given drop diameter and velocity, a range of liquid viscosities result in splashing even for smooth surfaces. The maximum spread radius, made dimensionless with the drop radius, is correlated as Rmax* = 0.61(Re2Oh)0.166, where Re and Oh are the Reynolds and Ohnesorge numbers. respectively. A model is proposed to account for inertial, viscous, and surface tension forces on the maximum spread radius. Good agreement is found between the model and experimental data from several sources.

Ancillary