Batch processes are very important to the chemical and manufacturing industries. Techniques for monitoring these batch processes to ensure their safe operation and to produce consistently high-quality products are needed. Nomikos and MacGregor (1994) presented a multiway principal component analysis (MPCA) approach for monitoring batch processes, and test results show that the method is simple, powerful, and effective. MPCA, however, is a linear method, and most batch processes are nonlinear. Although data treatment techniques can remove some nonlinearity from the data, nonlinearity is still a problem when using MPCA for monitoring. In this article a nonlinear principal component analysis (NLPCA) method (Dong and McAvoy, 1993) is used for batch process monitoring. Results show that this method is excellent for this problem. Another interesting extension of this approach involves multistage batch process monitoring, which is illustrated through a detailed simulation study.