Continuous SAPO-34 membranes were prepared on porous alumina tubular supports, and shown to be useful for light gas separations at low and high temperatures. Single-gas permeances of CO2, N2 and CH4 decreased with increasing kinetic diameter. For the best membrane at 300 K, the He and H2 permeances were less than that of CO2, because He, H2, and CO2 were small compared to the SAPO-34 pore, and differences in the heat of adsorption determined the permeance order. The smaller component permeated the fastest in CO2/CH4, CO2/N2, N2/CH4, H2/CH4 and H2/N2 mixtures between 300 and 470 K. For H2/CO2 mixtures, which were separated by competitive adsorption at room temperature, the larger component permeated faster below 400 K. The CO2/CH4 selectivity at room temperature was 36 and decreased with temperature. The H2/CH4 mixture selectivity was 8 and constant with temperature up to 480 K. Calcination, slow temperature cycles, and exposure to water vapor had no permanent effect on membrane performance, but temperature changes of approximately 30 K/min decreased the membrane's effectiveness.