SEARCH

SEARCH BY CITATION

References

  • Benezra R., Davis R. L., Lockshon D., Turner D. L., and Weintraub H. (1990) The Protein Id: A negative regulator of helix-loop-helix DNA binding proteins. Cell 61: 4959.
  • Braun T., Buschhausen-Denker G., Bober E., Tannich E., and Arnold H. H. (1989) A novel human muscle factor related to but distinct from MyoD1 induces myogenic conversion in 10T1/2 fibroblasts. EMBO J. 8: 701709.
  • Brennan T. J., and Olson E. N. (1990) Myogenin resides in the nucleus and acquires high affinity for a conserved enhancer element on heterodimenzation. Genes Dev. 4: 582595.
  • Carlson B. M. (1976) A quantitative study of muscle fiber survival and regeneration in normal, predenervated, and Marcaine-treated free muscle grafts in the rat. Exp. Neurol. 52: 421432.
  • Choi J., Costa M. L., Mermelstein C. S., Chagas C., Holtzer S., and Holtzer H. (1990) MyoD converts primary dermal fibroblasts, chondroblasts, smooth muscle, and retinal pigmented epithelial cells into striated mononucleated myoblasts and multinucleated myotubes. Proc. Natl. Acad. Sci. U.S.A. 87: 79887992.
  • Cossu G., and Molinaro M. (1987) Cell heterogeneity in the myogenic lineage. Curr. Top. Dev. Biol. 23: 185208.
  • Davis R. L., Weintraub H., and Lassar A. B. (1987) Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51: 9871000.
  • Davis R. L., Cheng P.-G., Lassar A. B., and Weintraub H. (1990) The MyoD DNA binding domain contains a recognition code for musclespecific gene activation. Cell 60: 733746.
  • Edmondson D. G., and Olson E. N. (1989) A gene with homology to the myc similarity of MyoD1 is expressed during myogenesis and is sufficient to activate the muscle differentiation program. Genes Dev. 3: 628640.
  • Eftimie R., Brenner H. R., and Buonanno A. (1991) Myogenin and MyoD join a family of skeletal muscle genes regulated by electrical activity. Proc. Natl. Acad. Sci U.S.A. 88: 13491353.
  • Füchtbauer E.-M., Reininghaus J., and Jockusch H. (1988) Developmental control of the excitability of muscle: Transplantation experiments on a myotonic mouse mutant. Proc. Natl. Acad. Sci U.S.A. 85: 38803884.
  • Grounds, M. D., Garrett K. L., Lai M. C., Wright W. E., and Beilharz M. W. (1991) Identification of skeletal muscle precursor cells in vivo using MyoD1 and myogenin probes. Cell Tissue Res., in press.
  • Hassell J. R., Gehron-Robey P., Barrach H. J., Wilczek J., Rennard S. I., and Martin G. R. (1980) Isolation of a heparin sulfate-containing proteoglycan from basement membrane. Proc. Natl. Acad. Sci U.S.A. 77: 44944498.
  • Hoh J. F. Y., Hughes S., Hugh G., and Pozgaj I. (1989) Three hierarchies in skeletal muscle fiber classification allotype, isotype and phenotype. In: “Cellular and Molecular Biology of Muscle Development,” KedesLh, and StockdaleFe (eds). New York: Alan R. Liss, pp 1526.
  • Lipton B. H., and Schultz B. (1979) Developmental fate of skeletal muscle satellite cells. Science 205: 12921294.
  • Mauro A. (1961) Satellite cells of skeletal muscle fibers. J. Biophys. Biochem. Cytol. 9: 493495.
  • Miner J. H., and Wold B. (1990) Herculin, a fourth member of the MyoD family of myogenic regulatory genes. Proc. Natl. Acad. Sci U.S.A. 87: 10891093.
  • Murre C., McCaw P. S., Vaessin H., Caudy M., Jan L. Y., Jan Y. N., Cabrera C. V., Buskin J. N., Hauschka S. D., Lassar A. B., Weintraub H., and Baltimore D. (1989) Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 58: 537544.
  • Nakamura T., Mahon K. A., Miskin R., Dey A., Kuwabara T., and Westphal H. (1989) Differentiation and oncogenesis: Phenotypically distinct lens tumors in transgenic mice. New Biol. 1: 193204.
  • Olson E. N. (1990) MyoD family: A paradigm for development? Genes Dev. 4: 14541461.
  • Rhodes S. I., and Konieczny S. F. (1989) Identification of MRF4: A new member of the muscle regulatory factor gene family. Genes Dev. 3: 20502061.
  • Sassoon D., Lyons G., Wright W. E., Lin V., Lassar A., Weintraub H., and Buckingham M. (1989) Expression of two myogenic regulatory facors myogenin and MyoD1 during mouse embryogenesis. Nature (London) 341: 303307.
  • Schäfer B. W., Blakely B. T., Darlington G. J., and Blau H. M. (1990) Effect of cell history on response to helix-loop-helix family of myogenic regulators. Nature (London) 344: 454458.
  • Stockdale F. E., Miller J. B., Feldman J. L., Lamson G., and Hager J. (1989) Myogenic cell lineages: Commitment and modulation during differentiation of avian muscle. In: “Cellular and Molecular Biology of Muscle Development,” KedesL. H., and StockdaleF. E. (eds.) New York: Alan R. Liss, pp 313.
  • Tapscott S. J., Davis R. L., Thayer M. J., Cheng P-F, Weintraub H., and Lassar A. B. (1988) MyoD1: A nuclear phosphoprotein requiring a myc homology region to convert fibroblasts to myoblasts. Science 242: 405411.
  • Weintraub H., Davis R., Tapscott S., Thayer M., Krause M., Benezra R., Blackwell T. K., Turner D., Rupp R., Hollenberg S., Zhuang Y., and Lassar A. B. (1991) The MyoD gene family: Nodal point during specification of the muscle cell lineage. Science 251: 761766.
  • Yutzey K. E., Rhodes S. J., and Konieczny S. F. (1990) Differential trans activation associated with the muscle regulatory factors MyoD1, myogenin, and MRF4, Mol. Cell. Biol. 10: 39343944.